
Transport Protocols

Claude Chaudet
Tel : 71 51

Claude.Chaudet@enst.fr

lundi 7 octobre 13

mailto:Claude.Chaudet@enst.fr
mailto:Claude.Chaudet@enst.fr

RES101

Outline
• TCP, UDP: Applicative Multiplexing

• Ports number

• TCP: End-to-end reliability
• End-to-end acknowledgments

• Opening and closing sessions

• TCP: Congestion control

2

lundi 7 octobre 13

RES101

• Several transport protocols exist in the Internet world

• UDP (User Datagram Protocol)
• minimalistic, almost only port numbers

• TCP (Transmission Control Protocol)
• Connected service: reliable, session management, segments order preserved
• Congestion control

• DCCP (Datagram Congestion Control Protocol)
• Congestion control over UDP

• SCTP (Stream Control Transmission Protocol)
• Configurable Transport protocol

3

Standard Transport Protocols

lundi 7 octobre 13

4

TCP, UDP: Applicative
Multiplexing

lundi 7 octobre 13

RES101

Applicative multiplexing
• Lower layers (physical, link, network) are there to carry a packet from a

source to a destination.

• Transport layer does the rest, once the packet has arrived

• Last level of addressing: port number
• Identifies an application / a service

5

Service HTTP FTP SMTP ssh

Application apache ftpd exim sshd

Port 80 21 25 22

lundi 7 octobre 13

RES101

Well-known port numbers
• How does an application know which port to use?
• Some ports numbers are standardized by IANA

(well known port numbers)
• http://www.iana.org/assignments/port-numbers
• cf. /etc/services file on an Unix Machine

6

ftp 21/tcp File Transfer [Control]
ftp 21/udp File Transfer [Control]
Jon Postel <postel&isi.edu>
ftp 21/sctp FTP
IETF TSVWG
Randall Stewart <rrs&cisco.com>
[RFC4960]
ssh 22/tcp SSH Remote Login Protocol
ssh 22/udp SSH Remote Login Protocol

lundi 7 octobre 13

RES101

Non-standard ports
• Sometimes an alternate port can be used for a connection

• Several applications offering the same service on the same machine (several
web servers, several FTP transfers, etc.)

• No dedicated port (new or specific application)
• Obfuscation: hide the information of which service is on which port

• Applications need to agree on which port to use
• Statically, in the code / a config file
• Through explicit applicative messages (example : FTP passive mode)
• User-specified to the application

7

Protocol to use IPv4 address
Port number

lundi 7 octobre 13

RES101

UDP header
• An UDP datagram is an IP packet

payload

• UDP has its own (minimalistic)
header:
• Source port (16 bits)

- To address potential answers

• Destination port (16 bits)

• Data length (16 bits)

• Checksum (16 bits ; RFC 768)
- Computed over header + data
- Necessary because no underlying layers reliability is assumed

8

Source Port Destination Port
Data Length Checksum

Data
(payload)

lundi 7 octobre 13

9

TCP: End-to-end reliability

lundi 7 octobre 13

RES101

• End-to-end reliability uses the same mechanisms as link layer
• Explicit acknowledgment of each segment
• Incremental sequence numbers to detect missing segments
• Usage of windows, similarly to the ARQ at link layer

• However:
• Acknowledgments are, from IP’s point of view, regular packets
• They can follow alternate paths, be discarded, lors, late, ...

10

End-to-end acknowledgments

Données

Acquittements

Data

Acknowledgment

lundi 7 octobre 13

RES101

Acknowledgments implementation
• We add to the transport header a

sequence number
• 32 bits number
• Unit: number of bytes and not segment ID

(necessary when fragmentation occurs)
• Initial value: a priori not equal to 0

or 1 ; it allows to distinguish successive
short transmissions

• Acknowledgments are regular segments; receiver mentions, in a
dedicated field, last byte index successfully received
• A bit (flag) indicates whether we are acknowledging something or not
• It is indeed the next byte the receiver expects to receive
• The format (field in a header rather than dedicated packet) allows to piggyback acks

with regular data if bidirectional traffic.
• If bidirectional traffic, sequence numbers are neither identical nor related

11

Source Port Destination Port

Checksum

Data
(payload)

Sequence number

...
Acknowledgment number

...
...

...

lundi 7 octobre 13

RES101

Acknowledgments: example

12

• For a bidirectional communication
• Emitter starts with a sequence

number equal to 432; receiver with
1030

• If the counter passes over 232, loop
back to 0

• If the initial sequence number may
be different from 0, how to make
sure that the first segments were
received?

Emitter Receiver

Segment 1

sequence = 432
Size = 40 bytes

Segment 2

sequence = 1030
ack = 473

size = 70 bytes
Segment 3

sequence = 473
ack = 1101
size = 1000 bytes Segment 4

sequence = 1101
ack = 1474

size = 70 bytes

lundi 7 octobre 13

RES101

When is a segment considered as lost?
• The date at which we expect to receive an acknowledgement cannot be

computed (unknown number of links, ...)
• Timeout setting requires measuring the Round Trip Time (RTT)

• Measure, for each segment, the delay between its emission and the reception of
the corresponding ACK (M)

• Use an EWMA window to average these values:
- RTT = α • RTT + (1 - α) • M
- Typical coefficient value : α = 0.875

• The timeout then needs to be set according to this parameter
• Van Jacobson Algorithm:
• Dispersion between the expected and actual value of the RTT is measured:

- D = α • D + (1 - α) • | RTT - M |
• Empirically, the timeout is set to the average + 4 times the dispersion

- Timeout = RTT + 4 • D

13

lundi 7 octobre 13

14

TCP: Sessions

lundi 7 octobre 13

RES101

• A TCP exchange is more than a simple set of messages
• Has a beginning and an end
• Messages orders is preserved

• TCP specifies a dedicated message exchange to mark the beginning
and end of a communication:
• Start up the connection: message exchange to agree on both directions

sequence numbers

• End of the connection: transmission of unacknowledged segments before
effectively closing the connection

15

TCP session

lundi 7 octobre 13

RES101

Connection opening
• It takes 3 messages to open a

connection:
• SYN : send the emitter’s initial sequence

number

• SYN ACK : accept the connection and
send the receiver’s initial sequence
number

• ACK : emitter confirms it received
correctly the receiver’s sequence
number.

16

Data / ACK

SYN (seq = 1234)

SYN ACK (ack = 1235 ; seq = 9876)

ACK (seq = 1235 ; ack = 9877)

lundi 7 octobre 13

RES101

State diagram — connection opening

17

Fermée

Écoute

SYN envoyé

SYN (seq)

SYN reçu

SYN (seq ; ack)

ACK (seq ; ack)
SYN ACK
envoyé

SYN ACK reçu

Connexion
établie Connexion

établie

Initiateur
(client)

Serveur

lundi 7 octobre 13

RES101

Closing a connection
• End of a connection is performed

with two messages
• FIN : indicate that we do not have any

more data to transmit

• ACK : notifies that all the expected data
was received correctly

• This exchange needs to be
performed in both directions
• A connection can be kept open in a

single direction

18

Data / ACK

FIN (ack = 2345 ; seq = 10123)

ACK (ack = 10124)

FIN (seq = 3456)

ACK (ack = 3457)

Unidirectional Data / ACK

lundi 7 octobre 13

RES101

State diagram — connection closing

19

Fermée

Écoute

Initiateur
(client)

Serveur

Connexion
établie

Connexion
établie

FIN (seq ; ack)

Attente fin

retransmissions
éventuelles

ACK (ack)

Connexion
établie

FIN (seq)

Attente fin

retransmissions
éventuelles

ACK (ack)

lundi 7 octobre 13

RES101

Implementation
• The control messages presented

above are indeed not real dedicated
messages

• Use of flags (bits) in the TCP header
• Identical to the acknowledgments

method

• Flags:
• ACK
• SYN
• FIN
• ...

20

Source port Destination Port

Checksum

Data
(payload)

Sequence

...
Ack number

S F...
...

A

...

lundi 7 octobre 13

21

TCP: Congestion control

lundi 7 octobre 13

RES101

• It consists in adapting a flow throughput to the network capacity:
• Limitation at the sender’s side
• When the receiver cannot handle the flow
• When the network cannot handle the flow

• Why?
• Emitting useless segments (that will be lots) imposes an unnecessary load on the

network ; provokes de-ordering
• Losses are (most of the time) due to congestion (overload of a network piece of

equipment).

• How?
• An emitter limits its sending rate according to its perception of the network/

receiver status

22

What is congestion control?

lundi 7 octobre 13

RES101

Windows
• Congestion control relies on two windows, whose size is expressed in

bytes:
• An anticipation window (cf. ARQ) that represents the amount of allowed

unacknowledged data
- Depends on the network status and in the end-to-end (bandwidth x delay) product

• A reception window, maintained by the receiver
- Indicates the free space in the reception buffer.
- Transmitted in packets/acks headers

• The emitter considers both values (min) to find the correct emission
throughput
• Increase throughput when resources are available
• Fast reaction to congestion to limit the problem quickly
• Fairness between flows objective: everybody needs to participate to congestion

resolution

23

lundi 7 octobre 13

RES101

Building the emitter’s perception
• The emitter can only rely on acknowledgments to know the network’s

status

• Lack of reception of an acknowledgment (before timeout) is interpreted
as if the segment has been lost
• Alternate possibilities: excessive delay, ack lost, ...

• Receiver window allows to distinguish between network losses and
receiver losses
• Number of bytes that the receiver can accept after this packet.

24

lundi 7 octobre 13

RES101

Full TCP header
• The Window field reports the

receiver’s window status

• A few other fields
• Options
• Header length
• Urgent data flag
• Explicit Congestion Notification flag

25

Source Port Destination Port

Checksum

Data
(payload)

Sequence Number

Window size
Ack number

S FLength
Urgent

U

Options

lundi 7 octobre 13

RES101

Slow Start
• Cautious start

• The emitter sends, at the beginning one MSS (max segment size) and expects to
receive the ack.

• Exponential window size increase
• Every time an ACK is received, window = window + 1
• Doubles every RTT
• Automatically stops when an ack is lost or when the receiver window is reached

26

1 2 3 4 5 6 7 8 9 10

Reception
window
(Unit: MSS)

Congestion
window
(Unit: MSS)

Note: The MSS is
negotiated when the
connection starts (SYN /
SYN ACK) by both ends.

Typical value is 1460 bytes
(Ethernet MTU minus 40
bytes for TCP/IP headers)

If not specified, default
value = 536 bytes

lundi 7 octobre 13

RES101

Congestion Avoidance
• There is a threshold beyond which emitter becomes more cautious

• When the congestion window reaches this threshold, window size increases by
one MSS at most every RTT

• Initial threshold value: 64 kB

• When a segment is lost (ack not received)
• Re-initialize window to 1 MSS
• Congestion avoidance threshold is divided by 2.

27

1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22

lundi 7 octobre 13

RES101

Fast retransmit & fast recovery
• Fast Retransmit

• Timeout to conclude that a segment is lost can, from time to time, be shortened.
• A receiver always acks only the last received byte. If there is a missing packet,

there will be duplicate acks.
• When the emitter receivers 3 duplicate acks (4 acks for the same byte), it

concludes it has to retransmit the next segment.

• Fast recovery
• After a fast retransmit phase, the collision avoidance mode is used (linear

increase), without going through the slow start phase. We do not need to reset to
0, the reception of the subsequent segments indicate a moderate congestion.

• When a timer expires, we reset the window and start slow start again.
• Allows a more important throughput when congestion is moderate

28

lundi 7 octobre 13

RES101

TCP Flavors (versions)
• Numerous TCP versions have been proposed (IETF drafts / RFC)

29

Version Year Slow Start Congestion
Avoidance

Fast
Retr /
Recov.

Other

Tahoe 1988 yes yes partial

Reno 1990 yes yes yes

New Reno yes yes yes Enhanced Fast recovery

Vegas 1994 yes yes yes Use an history to reduce
window size before losses

SACK 1996 yes yes yes Selective repeat —
Implemented as an option

lundi 7 octobre 13

RES101

Conclusion
• Two main transport protocols exist

• UDP : minimalistic - port numbers & error check
• TCP : reliability (ack + retransmissions), connection (open & close the session),

congestion control

• When a congestion happens, TCP adapts its throughput, UDP suffers
losses
• Unfair coexistence of both protocols

• Today, most flows are TCP flows in the Internet (even though P2P tends
to use UDP and implement retransmission at application layer)

• Other enhancements (ECN, ...) and other protocols (DCCP, SCTP, ...)
exist.

30

lundi 7 octobre 13

Programming Interface :
sockets

31

lundi 7 octobre 13

RES101

Programming TCP/IP applications
• For a programmer, a distributed application is on the top of the transport

layer
• Session (SSL/TLS) and presentation (XML, JSON, ...) are invoked through

additional libraries

• The classical API is called “sockets”
• Close to Inter-process communications (usually in operating systems courses)

• Classical sockets invoke UDP or TCP over IP
• There are also other types of sockets, depending on the transport (e.g. DCCP) or

network (e.g. IPv6) layers.

32

lundi 7 octobre 13

• Client Side

• Send a connection request on port X
Sockets : connect()

• Application-level exchanges
Sockets : send() ; recv()

• Close the connection
Sockets : close() ; shutdown()

• Server Side
• Reserve port X with the operating system
Sockets : bind()

• Start monitoring the port for incoming
connections
Sockets : listen()

• OS examines the port number and transmits
the datagram to the registered application

• Application answers — accept the
connection
Sockets : accept()

• Sockets : send() ; recv()

• Sockets : close() ; shutdown()

RES101

Socket API: usage

33

lundi 7 octobre 13

