Claude Chaudet

"ajivi Routing purpose

- Configure tables in routers so that packets take the best possible path from any source to any destination
- One route per IP prefix
- Shortest path with respect to a cost metric
- number of traversed routers (hops)
- delay
- financial cost (peering vs. transit)
- etc.

Pa

- Frequent changes in the routing table
- Devices addition / failures
- Routes cost evolution

- How to fill/update routing tables?

- Static routing: manual configuration by a system administrator
- Dynamic routing: automatic configuration - routers exchange data
- Each domain (Autonomous System) is free of its internal routing strategy
- What is an efficient routing protocol?
- Routes quality (length, delay, congestion, ...)
- Reaction to the topology changes (convergence speed)
- Overhead (amount of control messages necessary)
- Simplicity (easy to implement, light CPU load on routers)

10. Static routing

- Base idea: each router is configured manually (cf. lab)
- route add ...
- Once the routes are configured, they are not updated
- Well suited for a simple network or for terminals
- e.g.: set-top-box: 1 router and two routes (interior network vs. rest of the world)

- Not well adapted for a large and dynamic network (many routers, many alternate paths, ...)
- example: operator-level routing
- many routers (hundreds)
- each router contains a lot of routes (~200 000)

Px

- Automatic update of the routing tables

- The domain administrator defines the global policy (cost expression) and lets the network calculate routes autonomously
- Each network modification can be detected by routers
- Links up/down by hardware detection
- Paths update by a dedicated protocol
- Routers notify other routers of the changes and update routes accordingly
- Two main routing protocols families
- Distance-vector routing: based on Bellman-Ford algorithm
- Link-state routing: based on Dijkstra algorithm

Distance Vector Routing

Px livil Distance vector routing

- A router only communicates with its direct neighbors

- Regular emission of couples (destination; distance)
- When receiving such a message, a router compares its own paths with the newly announced ones
- If a better path is announced, replace the entry in the routing table
- Infinite iteration of the process
- Based on Bellman-Ford algorithm
- Complexity: $\mathrm{O}(\mathrm{n} . \mathrm{m})-\mathrm{n}=$ number of devices; $\mathrm{m}=$ number of links

Pa livil Algorithmic basis: Bellman-Ford algorithm

- G=(V,E): weighted graph that represents the network

- V: vertices (i.e. routers)
- E: edges (i.e. links)
- $\mathrm{w}\left(\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}\right)$: weight (length, delay,...) of the edge $\left(\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}\right)$

- On router $\mathrm{V}_{\mathrm{s}} \in \mathrm{V}$, OPT $_{\mathrm{s}}\left(i, \mathrm{~V}_{\mathrm{d}}\right)$ is the minimal cost of a path from V_{s} to V_{d} that passes through at most i edges

- Let P be an optimal path from V_{s} to V_{d}
- If P uses at most $i-1$ edges, $\mathrm{OPT}_{\mathrm{s}}\left(i, \mathrm{~V}_{\mathrm{d}}\right)=\mathrm{OPT}_{\mathrm{s}}\left(i-1, \mathrm{~V}_{\mathrm{d}}\right)$;
- If P uses exactly i edges, $\exists \mathrm{V}_{\mathrm{w}} \in \mathrm{V}$, neighbor of $\mathrm{V}_{\mathrm{s}} \mathrm{s}$.t.:

$$
\mathrm{OPT}_{\mathrm{s}}\left(\mathrm{i}, \mathrm{~V}_{\mathrm{d}}\right)=\mathrm{w}\left(\mathrm{~V}_{\mathrm{s}}, \mathrm{~V}_{\mathrm{w}}\right)+\mathrm{OPT}_{\mathrm{w}}\left(\mathrm{i}-1, \mathrm{~V}_{\mathrm{d}}\right)
$$

- Finally [1]:
$-\operatorname{OPT}_{s}\left(i, \mathrm{~V}_{\mathrm{d}}\right)=\min \left\{\mathrm{OPT}_{\mathrm{s}}\left(i-1, \mathrm{~V}_{\mathrm{d}}\right), \min _{\mathrm{w} \in \mathrm{V}}\left[\mathrm{w}\left(\mathrm{V}_{\mathrm{s}}, \mathrm{V}_{\mathrm{w}}\right)+\mathrm{OPT}_{\mathrm{w}}\left(\mathrm{i}-1, \mathrm{~V}_{\mathrm{d}}\right)\right]\right\}$
- We start with $\mathrm{OPT}_{\mathrm{s}}\left(n-1, \mathrm{~V}_{\mathrm{d}}\right)=+\infty$ and we minimize iteratively the value with equation (1).
[1] Richard Bellman: On a Routing Problem, in Quarterly of Applied Mathematics, 16(1), pp.87-90, 1958. [2] Lestor R. Ford jr., D. R. Fulkerson: Flows in Networks, Princeton University Press, 1962.

Px livil Distance Vector routing - example

- 5 routers, 6 links, heterogeneous costs
- 2 networks (N1 \& N3) connected to router A
- Initial routing tables:

A		
Network	Cost	Next
N1	1	Loc
N3	1	Loc

B		
Network	Cost	Next

C		
Network	Cost	Next

D		
Network	Cost	Next

E		
Network	Cost	Next

- First communication step

- Third communication step

Distance Vector routing - example

- Fourth communication step

- No modification
- The routing process has converged

A		
Network	Cost	Next
N1	1	Loc
N3	1	Loc

B		
Network	Cost	Next
N1	2	A
N3	2	A

C		
Network	Cost	Next
N1	4	B
N3	4	B

D		
Network	Cost	Next
N1	4	A
N3	4	A

E		
Network	Cost	Next
N1	6	B
N3	6	B

- B detects the failure

- It associates an infinite cost to N1 \& N3

	A		B			
Network	Cost	Next		Network	Cost	Next
N1	1	Loc	N1	∞	-	
N3	1	Loc		N3	∞	-

	A		B			
Network	Cost	Next		Network	Cost	Next
N1	1	Loc	N1	∞	-	
N3	1	Loc		N3	∞	-

C		
Network	Cost	Next
N1	4	B
N3	4	B

D		
Network	Cost	Next
N1	4	A
N3	4	A

E		
Network	Cost	Next
N1	6	B
N3	6	B

这萑 When a link breaks

- If the $E \rightarrow B$ message is

 emitted before the $B \rightarrow E$ one- Potentially slow re-convergence

A		
Network	Cost	Next
N1	1	Loc
N3	1	Loc

B		
Network	Cost	Next
N1	10	E
N3	10	E

C		
Network	Cost	Next
N1	$\mathbf{1 2}$	B
N3	12	B

D		
Network	Cost	Next
N1	4	A
N3	4	A

E		
Network	Cost	Next
N1	10	E
N3	10	E

- Two routers consider each other as the best next hop to a destination

- The algorithm shall wait until it reaches a large cost value to conclude that a route has failed

- Some solutions (non-exhaustive list)

- Limit the maximal cost (limit usually quite low; e.g: 15 hops)
- What happens in presence of routes effectively longer? Important calibration.
- Exchange next hop address in messages
- If a router sees itself as next hop, it will not consider the route
- Increases messages size, hence traffic
- Do not announce a route to a neighbor if the route passes through this neighbor (shared horizon)
- Requires to distinguish neighbors instead of using broadcast transmission

Implémentation: RIP (Routing Information Protocol)

- RFC 2453 (RIPng; 1998)

- A message is sent every 30 seconds
- Maximum 25 routes in a message
- Send to an IP multicast address (224.0.0.9)
- In case of failure:
- Detection time: 180 seconds
- Convergence time: a few minutes

- Links weights = 1
- Routes are selected based on the number of hops to the destination
- Link throughput is not considered
- Maximum number of hops: 15
- Avoids loops

Link State Routing

Pid livilink State routing

- Every router discovers its neighbors
- Hello packets exchanged regularly with neighbors
- It creates a Link State Packet (LSP) containing this list alongside with associated costs
- LSP is transmitted to every other router who keeps the most recent update from every other node
- Vision of the global topology of the network
- Transmission on particular events only
- New neighbor; neighbor disappeared; change of cost; ...
- Few messages generated in a stable network
- Every 30 minutes if nothing happened

- A router knows the whole network topology

- Hello messages to identify neighbors and to measure links costs
- Topology update messages to transmit neighborhood to all routers (usually through a multicast address)

- Shortest path calculation algorithm (Dijkstra)

[1] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.

Pa

- $G=(\mathrm{V}, \mathrm{E})$: weighted graph that represents the network

- V: Vertices (routers)
- E: edges (links)
- w(s1,s2): weight of the edge between V1 and V2
- The weight of a path is the sum of the weights of the edges that compose the path.

- For each router V_{s}

- V_{s} places itself as the root of a tree P (cycle-free sub-graph of G)
- V_{s} identifies the 1-hop neighbor that can be reached through the minimal cost edge
- This edge and this vertex are marked as selected
- The process is repeated by selecting at each step the minimal cost edge linking a selected and an unselected vertex
- The process stops when all vertices are selected (i.e. IVI steps)

Pa

Complexity: O(n²)

- Only requires local calculation, few messages
- Fast convergence
- Good scalability

R1	R2	R3	R4	R5	R6
0	\cdot	\cdot	\cdot	\cdot	\cdot

[1] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.

Paid Dijstra's algorithm - example (2)

Complexity: O(n²)

- Only requires local calculation, few messages
- Fast convergence
- Good scalability

R1	R2	R3	R4	R5	R6
0	\cdot	\cdot	\cdot	\cdot	\cdot
	(R2) (R0	\cdot	10000 (R4)	1000 (R5)	\cdot

[1] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.

ex livil Dijstra's algorithm - example (3)

Complexity: O(n²)

- Only requires local calculation, few messages
- Fast convergence
- Good scalability

R1	R2	R3	R4	R5	R6
0	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	100 (R2)	\cdot	10000 (R4)	1000 (R5)	\cdot
\cdot	\cdot	200 (R2)	100 (R2)	\cdot	1200 (R2)

[1] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.

Pid Iividijstra's algorithm - example (4)

Complexity: O(n²)

- Only requires local calculation, few messages
- Fast convergence
- Good scalability

R1	R2	R3	R4	R5	R6
0					
	$\begin{aligned} & 100 \\ & \text { (R2) } \end{aligned}$.	$\begin{gathered} 10000 \\ \text { (R4) } \end{gathered}$	$\begin{aligned} & 1000 \\ & \text { (R5) } \end{aligned}$.
		$\begin{aligned} & 200 \\ & \text { (R2) } \end{aligned}$	$\begin{aligned} & 1100 \\ & \text { (R2) } \end{aligned}$		$\begin{aligned} & 1200 \\ & \text { (R2) } \end{aligned}$
			$\begin{aligned} & 400 \\ & \text { (R6) } \end{aligned}$		$\begin{aligned} & 300 \\ & \text { (R3) } \end{aligned}$

[1] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.

"xilivil Example: OSPF (Open shortest path first)

- RFC 3740 (OSPF v3-1999)
- In case of failure:
- Convergence time around 1 sec (depends on the flooding time)

- Links weights

- Depends on the link capacity
- Weight = Reference capacity / true capacity

Maximum number of hops

- No limit
- Each router knowns the full topology.
- Complexity larger than RIP
- The network is divided in areas (divide and conquer)

Pa livil Internal routing protocols (IGPs)

- RIP

- Distance vector routing ; CIDR-compatible (VLSM)
- OSPF
- Link-state routing ; CIDR-compatible (VLSM)
- More popular in large companies

IS-IS

- Link-state routing ; CIDR-compatible (VLSM)
- Hierarchization of routers (inside an area vs. between areas)
- More popular at ISPs
- Multi-protocol (not limited to IP and does not use IP for control packets transmission)
- EIGRP (Cisco)
- hybrid protocol (distance vector basis with distinction for the neighbor routers)
- Compound metric (mixes delay, capacity, reliability, load)

Inter-domain routing

- RIP et OSPF are IGP (Interior Gateway Protocol)
- Their usage is bounded to a domain (AS)
- ISPs \& companies are free to choose their internal routing policy
- Most often, static or link-state routing (OSPF, IS-IS)

- For external routing, (between ISP), a single standard protocol: BGP 4 (RFC 4271)
- Path vector routing
- Implemented between AS (eBGP) and between edge routers of a single AS (iBGP)

陠

- eBGP:

- point-to-point connection (unicast) between close routers
- A router announces the accessible prefixes (i.e. the ones the AS accepts to route) and the AS-paths (list of traversed AS)

- eBGP does not utilize explicit costs

- Choice of the best route for a destination based on:
- Routing policies (e.g. prefer peering links over transit links)
- AS-path: pass by the lowest number of AS

- The IGP is hidden from other AS

- Mutual trust between close AS

iBGP: border routers belonging to the same AS exchange routing information

- Share information to take a decision on how to reach any IP prefix at the AS level

- Differences between iBGP and eBGP

- eBGP works over dedicated links
- iBGP routers are separated by a whole network (switches, routers, ...)
- Unicast connections in both cases
-eBGP: single link, single peer
- iBGP: Mesh network of all routers (strong connexity)

137.194.0.0/16

- Internet routing happens at multiple scales
- eBGP between AS
- iBGP between border routers of an AS, for external prefixes
- arbitrary IGP (RIP, OSPF, static, ...) inside an AS

- IGP: various strategies

- Distance vector vs. link state vs...

