

Dynamic routing

Claude Chaudet

Routing purpose

Configure tables in routers so that packets take the best possible path from any source to any destination

- One route per IP prefix
- Shortest path with respect to a cost metric
 - number of traversed routers (hops)
 - -delay
 - financial cost (peering vs. transit)
 - -etc.

Routing Tables updates

Frequent changes in the routing table

- Devices addition / failures
- Routes cost evolution

How to fill/update routing tables?

- Static routing: manual configuration by a system administrator
- Dynamic routing: automatic configuration routers exchange data
- Each domain (Autonomous System) is free of its *internal* routing strategy

What is an efficient routing protocol?

- Routes quality (length, delay, congestion, ...)
- Reaction to the topology changes (convergence speed)
- Overhead (amount of control messages necessary)
- Simplicity (easy to implement, light CPU load on routers)

Static routing

Base idea: each router is configured manually (cf. lab)

- route add ...
- Once the routes are configured, they are not updated

Well suited for a simple network or for terminals

• e.g.: set-top-box: 1 router and two routes (interior network vs. rest of the world)

Not well adapted for a large and dynamic network (many routers, many alternate paths, ...)

- example: operator-level routing
 - many routers (hundreds)
 - •each router contains a lot of routes (~ 200 000)

Dynamic routing

Automatic update of the routing tables

- The domain administrator defines the global policy (cost expression) and lets the network calculate routes autonomously
- Each network modification can be detected by routers
 - Links up/down by hardware detection
 - Paths update by a dedicated protocol
- Routers notify other routers of the changes and update routes accordingly

Two main routing protocols families

- Distance-vector routing: based on Bellman-Ford algorithm
- Link-state routing: based on Dijkstra algorithm

Distance Vector Routing

6

lundi 14 octobre 13

Distance vector routing

A router only communicates with its direct neighbors

- Regular emission of couples (destination; distance)
- When receiving such a message, a router compares its own paths with the newly announced ones
- If a better path is announced, replace the entry in the routing table
- Infinite iteration of the process

Based on Bellman-Ford algorithm

Complexity: O(n.m) — n = number of devices; m = number of links

Algorithmic basis: Bellman-Ford algorithm

G=(V,E): weighted graph that represents the network

- V: vertices (i.e. routers)
- E: edges (i.e. links)
- w(Va, Vb): weight (length, delay,...) of the edge (Va, Vb)

(1)

• On router $V_s \in V$, $OPT_s(i, V_d)$ is the minimal cost of a path from V_s to V_d that passes through at most *i* edges

- Let P be an optimal path from V_{s} to V_{d}
- If P uses at most i-1 edges, $OPT_s(i, V_d) = OPT_s(i-1, V_d)$;
- If P uses exactly *i* edges, $\exists V_w \in V$, neighbor of V_s s.t.:

 $OPT_s(i, V_d) = w(V_s, V_w) + OPT_w(i-1, V_d)$

• Finally [1]:

 $-OPT_{s}(i, V_{d}) = \min\{OPT_{s}(i-1, V_{d}), \min_{w \in V} [w(V_{s}, V_{w})+OPT_{w}(i-1, V_{d})]\}$

• We start with $OPT_s(n-1, V_d) = +\infty$ and we minimize iteratively the value with equation (1).

[1] Richard Bellman: On a Routing Problem, in Quarterly of Applied Mathematics, 16(1), pp.87-90, 1958.[2] Lestor R. Ford jr., D. R. Fulkerson: Flows in Networks, Princeton University Press, 1962.

• 5 routers, 6 links, heterogeneous costs

 2 networks (N1 & N3) connected to router A

Initial routing tables:

A					В	
Network	Cost	Next		Network	Cost	Next
N1	1	Loc				
N3	1	Loc	-			

	С		D		
Network	Cost	Next	Network	Cost	Next

E				
Network	Cost	Next		

First communication step

A			В			
Network	Cost	Next	Network	Cost	Next	
N1	1	Loc	N1	2	A	
N3	1	Loc	N3	2	Α	

	С		
Network	Cost	Next	Netw
			N1
		·	

D					
Network	Cost	Next			
N1	4	A			
N3	4	A			

	E	
Network	Cost	Next

Third communication step

A			В			
Network	Cost	Next	Network	Cost	Next	
N1	1	Loc	N1	2	A	
N3	1	Loc	N3	2	A	

С			D		
Network	Cost	Next	Network	Cost	Next
N1	4	В	N1	4	A
N3	4	В	N3	4	A

E						
Network	Cost	Next				
N1	6	В				
N3	6	В				

Fourth communication step

- No modification
- The routing process has converged

A			В			
Network	Cost	Next	Network	Cost	Next	
N1	1	Loc	N1	2	A	
N3	1	Loc	N3	2	A	

С			D		
Network	Cost	Next	Network	Cost	Next
N1	4	В	N1	4	A
N3	4	В	N3	4	A

E						
Network	Cost	Next				
N1	6	В				
N3	6	В				

When a link breaks

B detects the failure

 It associates an infinite cost to N1 & N3

А			В				
	Cost	Next	Network	Cost	Next		
	1	Loc	N1	∞	_		
	1	Loc	N3	ø	_		

С		D			E				
Network	Cost	Next	Network	Cost	Next		Network	Cost	Next
N1	4	В	N1	4	A		N1	6	В
N3	4	В	N3	4	A		N3	6	В

Network

N1

N3

When a link breaks

If the E → B message is emitted before the B → E one

Potentially slow re-convergence

A			В		
Network	Cost	Next	Network	Cost	Next
N1	1	Loc	N1	10	E
N3	1	Loc	N3	10	E

С		D			E				
Network	Cost	Next	Network	Cost	Next		Network	Cost	Next
N1	12	В	N1	4	A		N1	10	E
N3	12	В	N3	4	A		N3	10	E

Count to Infinity problem

• Two routers consider each other as the best next hop to a destination

 The algorithm shall wait until it reaches a large cost value to conclude that a route has failed

Some solutions (non-exhaustive list)

- Limit the maximal cost (limit usually quite low; e.g: 15 hops)
 - What happens in presence of routes effectively longer? Important calibration.
- Exchange next hop address in messages
 - If a router sees itself as next hop, it will not consider the route
 - Increases messages size, hence traffic
- Do not announce a route to a neighbor if the route passes through this neighbor (shared horizon)
 - Requires to distinguish neighbors instead of using broadcast transmission

Implémentation: RIP (*Routing Information Protocol*)

RFC 2453 (RIPng; 1998)

- A message is sent every 30 seconds
- Maximum 25 routes in a message
- Send to an IP multicast address (224.0.0.9)

In case of failure:

- Detection time: 180 seconds
- Convergence time: a few minutes

Links weights = 1

- Routes are selected based on the number of hops to the destination
- Link throughput is not considered

Maximum number of hops: 15

Avoids loops

Link State Routing

17

lundi 14 octobre 13

Link State routing

Every router discovers its neighbors

• Hello packets exchanged regularly with neighbors

It creates a Link State Packet (LSP) containing this list alongside with associated costs

• LSP is transmitted to every other router who keeps the most recent update from every other node

• Vision of the global topology of the network

Transmission on particular events only

- New neighbor; neighbor disappeared; change of cost; ...
- Few messages generated in a stable network
- Every 30 minutes if nothing happened

Link State routing

A router knows the whole network topology

- Hello messages to identify neighbors and to measure links costs
- Topology update messages to transmit neighborhood to all routers (usually through a multicast address)

Shortest path calculation algorithm (Dijkstra)

Algorithmic basis: Dijkstra's algorithm

G = (V,E): weighted graph that represents the network

- V: Vertices (routers)
- E: edges (links)
- w(s1,s2): weight of the edge between V1 and V2
- The weight of a path is the sum of the weights of the edges that compose the path.

For each router V_s

- V_s places itself as the root of a tree *P* (cycle-free sub-graph of G)
- V_s identifies the 1-hop neighbor that can be reached through the minimal cost edge
- This edge and this vertex are marked as selected
- The process is repeated by selecting at each step the minimal cost edge linking a selected and an unselected vertex
- The process stops when all vertices are selected (i.e. IVI steps)

[1] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.

Dijstra's algorithm - example (1)

Complexity: O(n²)

- Only requires local calculation, few messages
- Fast convergence
- Good scalability

R1	R2	R3	R4	R5	R6
0					

Dijstra's algorithm - example (2)

Complexity: O(n²)

- Only requires local calculation, few messages
- Fast convergence
- Good scalability

R1	R2	R3	R4	R5	R6
0					
	100 (R2)		10000 (R4)	1000 (R5)	

ELEC

Dijstra's algorithm - example (3)

Complexity: O(n²)

- Only requires local calculation, few messages
- Fast convergence
- Good scalability

R1	R2	R3	R4	R5	R6
0					
	100 (R2)		10000 (R4)	1000 (R5)	
		200 (R2)	1 100 (R2)		1 200 (R2)

Dijstra's algorithm - example (4)

Complexity: O(n²)

- Only requires local calculation, few messages
- Fast convergence
- Good scalability

R1	R2	R3	R4	R5	R6
0					
	100 (R2)		10000 (R4)	1000 (R5)	
		200 (R2)	1 100 (R2)		1 200 (R2)
			400 (R6)		300 (R3)

ELEC

[1] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.

Example: OSPF (Open shortest path first)

RFC 3740 (OSPF v3 - 1999)

In case of failure:

• Convergence time around 1 sec (depends on the flooding time)

Path Chosen by RIP Links weights С В 1 St 1562 64 N1 N2 .544 Mbit/s 64kb/s Depends on the link capacity 64 64 Weight = Reference capacity / true capacity 1,544 Mbit/s 1,544 Mbit/ 64 1.544 Mbit/s

Path Chosen by OSPF

Maximum number of hops

- No limit
- Each router knowns the full topology.

Complexity larger than RIP

• The network is divided in *areas* (divide and conquer)

Internal routing protocols (IGPs)

RIP

Distance vector routing ; CIDR-compatible (VLSM)

OSPF

- Link-state routing ; CIDR-compatible (VLSM)
- More popular in large companies

IS-IS

- Link-state routing ; CIDR-compatible (VLSM)
- Hierarchization of routers (inside an area vs. between areas)
- More popular at ISPs
- Multi-protocol (not limited to IP and does not use IP for control packets transmission)

EIGRP (Cisco)

- hybrid protocol (distance vector basis with distinction for the neighbor routers)
- Compound metric (mixes delay, capacity, reliability, load)

Inter-domain routing

27

lundi 14 octobre 13

BGP: Inter-domain routing

RIP et OSPF are IGP (Interior Gateway Protocol)

• Their usage is bounded to a domain (AS)

ISPs & companies are free to choose their internal routing policy

Most often, static or link-state routing (OSPF, IS-IS)

For external routing, (between ISP), a single standard protocol: BGP 4 (RFC 4271)

• Path vector routing

• Implemented between AS (eBGP) and between edge routers of a single AS (iBGP)

Between AS: eBGP

•eBGP:

- point-to-point connection (unicast) between close routers
- A router announces the accessible prefixes (i.e. the ones the AS accepts to route) and the AS-paths (list of traversed AS)

BGP does not utilize explicit costs

- Choice of the best route for a destination based on:
 - Routing policies (e.g. prefer peering links over transit links)
 - AS-path: pass by the lowest number of AS

The IGP is hidden from other AS

Mutual trust between close AS

Inside an AS: iBGP

iBGP: border routers belonging to the same AS exchange routing information

- Share information to take a decision on how to reach any IP prefix at the AS level

Differences between iBGP and eBGP

- eBGP works over dedicated links
- iBGP routers are separated by a whole network (switches, routers, ...)
- Unicast connections in both cases
 - eBGP: single link, single peer
 - iBGP: Mesh network of all routers (strong connexity)

Conclusion

Internet routing happens at multiple scales

- eBGP between AS
- iBGP between border routers of an AS, for external prefixes
- arbitrary IGP (RIP, OSPF, static, ...) inside an AS

IGP: various strategies

Distance vector vs. link state vs...

