Internet Protocol: IP packet headers

vendredi 18 octobre 13

IPv4 header

- V: Version (IPv4 ; IPv6)
- L: Header length (variable because of options)
- TOS: Type of Service flow class
- Total length: packet length
- Identification / F / Frag: fragmentation
- **TTL**: *Time to* Live ; maximum number of routers traversals authorized
- Proto: upper level protocol (TCP or UDP)
- Checksum: header integrity check
- Source address
- Destination address
- Options (security, ...)
- **Padding**: to align length to a 32 bits multiple

RES101

IPv6: header evolution

V	L	r	гоз	Total Length		
Identification			tion	F Frag		
TTL Proto		Proto	Checksum			
Source address						
	Destination address					
O	otion	S	Padding			

RES101

vendredi 18 octobre 13

IPv6: header evolution

V	L	r	гоз	Total Length		
Identification			tion	F Frag		
TTL Proto			Proto	Checksum		
	Source address					
	Destination address					
O	otions	5	Padding			

V	Class	Flow Label						
Payload length			Next H	Hop lim				
	So	urce	address					
	Destination address							

RES101

vendredi 18 octobre 13

IPv6: header evolution

V	L	r	ГOS	Total Length		
Identification			tion	F Frag		
TTL Proto			Proto	Checksum		
Source address						
	Destination address					
O	otion	S	Padding			

- 7 fields instead of 13
 - Easier routing
 - Fixed size
- Removed fields
 - Checksum ; header length ; fragmentation ; options

V	Class	Flow Label						
Pa	yload leng	gth	Next H	Hop lim				
	Source address							
	Destination address							

RES101

vendredi 18 octobre 13

IPv6: header

- Version: 6
- Traffic class (QoS)
- Flow Label (QoS)
- Payload length (replaces packet length)
- Next header (replaces protocol)
- Hop Limit (replaces TTL)
- Source address
- Destination address

V	Class	Flow Label						
Longueur payload			Next H	Hop lim				
	Source address							
	Destination address							

Network layer additional mechanisms

Claude Chaudet

IP addresses automatic allocation: DHCP

6

vendredi 18 octobre 13

DHCP Introduction

- DHCP = Dynamic Host Configuration Protocol
 - Protocol destined to allocate IP addresses to terminals on a network
 - Evolution of BootP
- Main goal: send to connecting hosts the whole set of network parameters
 - Allocate an IP address and a network mask
 - Propagate the addresses of useful servers (SMTP, DNS, ...)

Protocol principles

- Simple behavior :
 - When requesting an address, the client broadcasts a DHCPDISCOVER request
 - The server replies with a broadcast DHCPOFFER packet
 - The client sends back a DHCPREQUEST unicast message to validate the IP address choice
 - The server finally answers with an unicast DHCPACK confirmation
- The address is *leased* to the client for a certain duration
 - The client may prolongate this duration by issuing another DHCPREQUEST message

Detailed behavior

- What happens when the server and the client are not on the same segment?
 - Broadcasts do not cross routers
 - Use DHCP relays to catch broadcast and retransmit it towards the real DHCP server
- Why is DHCP an application layer protocol?
 - It only concerns layer-3 addresses
 - However, it relies on a client-server architecture and may need other services provided by upper layers (reliable transmission, security, ...)
 - In the absence of a pure layer-3 solution, it has been deployed as an application layer protocol.

IP signaling: ICMP

10

vendredi 18 octobre 13

Role of ICMP

- IP is a simple mechanism, dedicated to end-to-end packets transmission
- It is not really a protocol, as there are no messages defined by IP itself
- However, it relies on a series of side protocols:
 - e.g.: Routing tables management: BGP, OSPF, IS-IS

- ICMP (*Internet Control Messages Protocol*) provides the missing signaling:
 - Errors handling (when routing fails)
 - Exchange of information between hosts and interconnection devices

RES101

vendredi 18 octobre 13

ICMP - Layer 3 signaling

- ICMP is a network layer protocol, implemented as an IP packet
 - Protocol type = 1; TOS = 0
- It is encapsulated in an IP packet and defines three fields:
 - ICMP type: type of message
 - Code: error code
 - Checksum: on ICMP part only
 - Padding/data: potential ICMP data

RES101

vendredi 18 octobre 13

Example — echo request (Ping)

- Message sent to a host or to a router
 - The destination should answer by the same message, indicating that it is alive and connected.
- Request: type = 8; code = 0; data = sequence number
- Answer: type = 0; code = 0; data = sequence number
- Used by ping
- Often filtered by routers for security (obfuscation)

Example - destination unreachable

- This message is sent by a router or by an end host to inform the source that the destination application cannot be reached
- Message type = 3
- Code gives precisions on the error location:
 - 0: network unreachable
 - 1: host does not exist on network
 - 4: unreachable port (no application listening)
 - etc.
- Routers are not forced to send these messages.
 - Security / reliability justification: avoid overloading the router

RES101

vendredi 18 octobre 13

Example - Time expired

- The TTL field in the IP header is decremented by 1 each time a router is crossed.
 - When the value reaches 0, the packet is dropped and the source is notified with an ICMP message
- Type = 11
- Application (cf. Lab): traceroute
 - Traceroute uses a series of ping requests to the destination
 - First packet is sent with a TTL=1

RES101

- The first router drops the packet and informs the source, revealing its address
- Second packet is sent with a TTL=2
- The second router drops the packet, informs the source
- etc.

Network Address Translation (NAT)

16

vendredi 18 octobre 13

NAT principle

NAT was first an answer to the scarcity of the IPv4 addressing space

- How to hide a whole network behind one IP address ?
- Sometimes 2, 3, ..., N addresses can be shared

NAT: general principles

In the LAN, use a private addressing space

- 192.168.0.0/16; 10.0.0.0/8 or 172.16.0.0/12
- Non-routable (a router will discard a packet destined to such an address)

Use a gateway that modifies the IP header

 Contrary to the expected behavior of IP (keep the same address end-toend)

The gateway's duty

The gateway keeps track of which connection involves which computer

- A port number (transport layer) ↔ one device
- One public IP address \leftrightarrow one device
- Combination of both

The gateway looks, for each packet, the header fields to find how to modify the packet

- Change source/destination TCP/UDP port
- Change source/destination IP address

Modification of every packet => time consuming and reserved for reasonable size networks

Example: a request and an answer

Port numbers				
Source: 49737 Dest.: 80	Source: 63822 Dest.: 80			
IP addresses				
Source: 192.168.0.1 Dest.: 173.194.78.94	Source: 12.24.32.17 Dest.: 173.194.78.94			

Port numbers				
Source: 80 Dest.: 49737	Source: 80 Dest.: 63822			
	IP addresses			
Source: 173.194.78.94 Dest.: 192.168.0.1	Source: 173.194.78.94 Dest.: 12.24.32.17			

Different NAT types

Using a set of ports or IP addresses

 In the classical scenario (*masquerading*) the gateway uses a set of ports to distinguish connections

Source (SNAT) vs. destination (DNAT)

- outgoing: SNAT; incoming: DNAT

Static NAT vs. Dynamic NAT

- Static: permanent association between external and internal parameters
 - Often used for DNAT (server behind a NAT gateway)
 - ex: web server (port 80) that answers on 137.194.2.34 is indeed on 192.168.0.4
- Dynamic: the gateway decides of the parameters in function of the traffic
 - Outgoing connections: classical situation
 - Incoming connections: load balancing between servers (for example)

NAT: summary and introduced problems

NAT hides behind k IP addresses a network of n > k machines

- Requires a gateway that performs address translation
- Often uses port numbers => breaks layer independence
- Change IP address => non-compliant to the core IP principles

Introduced problems

- The gateway often becomes a bottleneck
- Explicit configuration often necessary for incoming connections
- Some applications negotiate port numbers dynamically (FTP, p2p) => specific mechanisms on the platform to look in the packets payloads

Virtual Private Networks (VPN)

23

vendredi 18 octobre 13

The problem

A user is connected through an ISP

• At home (telework), from a client's network, in travel, ...

He wants to access his company's resources as if he were inside the company's network.

• i.e. have an IP address that belongs to the company's network

- Access to internal servers (*firewalls*)
- Access to external resources that identify clients based on their IP addresses

In this situation, IP forwarding will direct all packets to the home network, never to the visited network.

The solution: virtual private networks (VPN)

Use a gateway inside the home network

- Authenticates devices
- Receives all packets destined to remote devices
- Retransmit packets to the real, visited, IP
 - Terminal uses, from its point of view, its home address

Base mechanism: *tunneling*

- Peers send packets to the home address
- Packet gets routed to the VPN server
- VPN server encapsulates the IP packet in another IP packet, destined to the visited address
- This packet is sent, through the Internet, to the real device
 - May get fragmented (MTU)
- The VPN software "decapsulates" the packet before transmitting it to the transport layer
- Reverse direction similar

vendredi 18 octobre 13

Various VPN types

Tunneling can be applied at various levels

- IP in IP
 - IPSec (with ciphering)
 - Mobile IP
- IP in HTTP
- Layer 2 protocol (e.g. PPP) in IP
 PPTP, L2TP
- IP in SSL/TLS
 - SSL/TLS = secure session-level protocol
- IP in SSH
 - SSH: secure telnet

Conclusions on the Application and Network Layers

What to know

General concepts

- Circuit switching vs. packet switching
- OSI model
- Encapsulation
- Standards (where to find detailed information on a protocol, technology, ...)

Networks architectures

- A few facts about telephone networks (hierarchical architecture, databases,...)
- Orders of magnitude (networks sizes)
 - 1 billion devices ; 50000 AS
- Internet : Access vs. Core
- Autonomous Systems (+ existence of online databases)
- Peering vs. transit

What to know (2)

Application layer

- Notion of applicative protocol
- Applicative metrics (throughput, delay, jitter, loss rate, ...)
- Application classes (real-time/conversational, streaming, elastic,...)
- Classical applications: DNS, DHCP, ...

Transport Layer

- Roles: port numbers, sessions, fault tolerance, congestion control
- TCP behavior and base mechanisms (slow start, congestion avoidance, ...)

Network Layer

- Addressing formats and role (locating users, routing)
- IP addressing principles (prefix vs IID, IPv6, reserved slices,...)
- IP forwarding principles (and VPN, NAT, ...)
- Routing algorithms and protocols names and roles (eBGP, iBGP, OSPF, IS-IS)
- Unicast, broadcast, multicast
- ICMP and applications (traceroute, ...)

What to know

Practical skills

- Networking toolbox (commands, frame analysis, ...)
- Be able to make an IP addressing map
- Configure routing

Be able to characterize an application

- Traffic characteristics
- Spy on a protocol

Be able to diagnose a connection

- What do I need to communicate: IP address, gateway, DNS server, ...
- Diagnose routing problems (ping, traceroute, ...)

