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Queueing theory
nA mathematical model for access to a shared resource 

• Networks / telecom examples: router buffer, telephone lines 
• Everyday life: road networks, supermarket counters 
!

nPurpose: estimate certain parameter values… 
• Waiting time 
• Size of filling level of a waiting line 
• Rejection probability (saturated system, ...) 

n ... in function of some system parameters 
• Number of demands/load 
• Processing speed 
• Size/organization of the waiting line
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nGeneral process 
• Clients arrive un a system — modeled as a random process 
• Clients wait (waiting room, buffer, ...) 
• Clients are served by the system — random duration 
• Clients exit the system 
!
!
!
!
!
!

• We are interested in the system behavior and in its influence on the 
clients flow (how is the incoming flow transformed in the exit flow)

General model
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Example: network interconnection device
nA packet can arrive while the CPU processes another one 

• How much time will each packet wait, 
on average? 
!

• How much memory is necessary 
for a 100 Gb/s router with a CPU  
capable of processing packets in  
1 ms (on average)? 
─ Which table size can we allow 

to avoid delaying packets too much,  
knowing that search happens in  
O(log n) time?
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Example: supermarket
n In a supermarket, there are several counters: 

• Is it better to have one or multiple queueing lines? 
─ Based on which criterion (average waiting time; max waiting time? ; ...) 
!

• How many people are necessary to have a waiting time inferior to a 
given value?
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Example: telephone network
nHow many lines are necessary to interconnect N users? 

• Too many: high cost for the operator 
• Too few: bad quality of service (rejection probability high)
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The model
nProblem data:  

• Arrival process 
(inter-arrivals distribution) 
─ parameters (average, variance,...) are known 

• Service process (distribution of service time) 
─ parameters (average, variance,...) are known 

!
nWe want to characterize how the queue behaves 

• Average number of clients in the queue    Q 
• Average waiting time      W 
• Average sojourn time (total time passed in the system)  τ 
• Probability to find a full/empty queue for an arbitrary client 
• Exit process in function of the entry process and the queue behavior

!7

1/λ
1/λout

τ

1 
   µ

W



RES 841November 2013 Introduction to queueing theory

Different models: Kendall Taxonomy
nQueueing systems are classified in classes 
!

nClass name: T/X/C/K/m/Z 
• T : Inter-arrivals process 
• X : Service process 
• C : Number of servers 
• K : Queue length (including servers ; optional, default = +∞) 
• m : population (optional, default = +∞) 
• Z : queueing discipline (optional, default = FIFO) 
!

nExemples 
• M/M/1 ; M/M/C ; M/M/C/C 
• M/G/1 ; G/M/1
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M Exponential (Markov)
G General (arbitrary)
D Deterministic (constant)
H Hyperexponential
E Erlang (sum exponential)

T / X : examples

FIFO classical queue
LIFO stack
PS processor sharing
RANDOM random selection

Z : examples
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nTraffic represents the occupation of a resource (server, 
communication link, …) 
• Traffic on a resource is the occupation proportion (or occupation 

probability) of this resource: α ∈ [0 ; 1] 
!
!
!
!

!
nThe traffic unit is an "Erlang", named after the Danish engineer 

(1917)  
• One erlang represents a 100% occupation 
• Convention: On N servers, traffic varies between 0 and N Erlang

!9
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Definitions: traffic and load (2)
nTraffic represent the ratio between arrivals intensity and the 

service speed 
• α =  λ / μ	
 with  λ arrivals rate (client / s) 

   µ service rate (avg. service time = 1/µ) 
!
!
!

nThe load is the ratio between intensity of the arrivals and the 
global service rate of the system 
• ρ = λ / (m.μ)  for m servers 
• ρ = α   for a single server

!10



RES 841November 2013 Introduction to queueing theory!11

Definitions: system stability
n If the arrival rate is greater than the service capacity, the system 

cannot process the requests 
• Problem is solved; the queue is overloaded, it is qualified of unstable 
• We are only interested in stable systems 
!

n If there is no clients creation or destruction within the system, 
the system is said to be stable iff: 
• Clients do not arrive faster than the system can process 
• ⇔ ρ < 1 : load is (strictly) inferior to 1 
• ⇔ λ < µ : for a single server ; λ < m.µ for m servers 

!
nIn a stable system, λ = λout

15
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Queueing systems analysis
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Evolution of the number of clients in queue
nObserving the system, it is possible to draw the number of 

clients in the queue. 
• Log arrivals and departures times
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System usage
nComparing the arrival process A(t) and the departure process 

D(t), we can see:  
• Services times (under FIFO discipline)   : τk 

• Number of clients in the system at every moment : N(t)

!14
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System usage (2)
nThe area between both curves (S) can be calculated by two 

different ways:
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System usage (3)
!

nBoth expressions are equal : 
!
!
!

nTherefore :
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Little’s Formula
nAssumptions: 

• The systems is stable 
• No creation or destruction of 

clients within the system 
!
!

nLittle’s formula : Q = τ . λ 
• Q = average number of clients in the system 
• τ = average sojourn time 
• λ = throughput (incoming or outgoing) 
!

nDoes not depend on the arrival process / service time 
distribution

!17
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Exponential random variables 
Poisson processes
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Exponential law: definition
nA random variable follows an exponential law, with parameter λ 

if its cumulative distribution function (CDF) is: 
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P (X > t) = e��.t P (X  t) = 1� e��.t⇔
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Exponential law: probability density function
nThe probability density function (PDF) is the derivative of the 

CDF:

!20
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Exponential law: average and variance
nAverage (expected value) : 
!
!
!

nVariance :  
!
!
!

nStandard deviation:
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Exponential law: fundamental properties
nExponential law is memory-less:  
!
!

nProof  
• Using the conditional probabilities definition:

!22

P (X > s+ t|X > s) = P (X > t)

P (A \B) = P (A|B).P (B)

P (X > s+ t|X > s) =
P ((X > s+ t) ^ (X > s))

P (X > s)

= P (X > s+ t)

(CDF)
=

e��.(s+t)

e��.s

= e��.t = P (X > t) (exponential function 
property)
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Exponential law: memory-less property
nWhat it means:  

• Observe a phenomenon whose occurrence follows an exponential law  
• The time passed observing has no effect on the probability that the 

event occurs after 1s, 2s, …
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In practice
nWe observe a phenomenon and make the assumption that it 

can be characterized by an exponential law 
!

nSteps to verify the hypothesis 
• The frequency histogram should look like a geometric distribution 

─ Be careful, the shape of the histogram does not provide any proof, just intuition 
!

• Compute average and variance of the samples 
─ If exponential law, average = 1/λ ; variance = 1/λ2 

!
• We check the hypothesis with a statistical test 

─ Pearson’s Χ2 test, Kolmogorov-Smirnov test, ...

!24
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Kolmogorov-Smirnov fitting test
nSamples (measured values) : {x1, x2, ..., xn} 
nWe build the empirical CDF that corresponds to our samples 

!
•   
!

nWe then consider the theoretical CDF: 
!

•   
!

nWe then study the function | F - Fn | 
• Find its maximum value and compute the following indicator:  
!
!

• Compare the Dn value with Kolmogorov table

!25

Fn(x) =
Card({i|xi  x})

n

F (x) = P (X  x) = 1� e
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Kolmogorov table

!26

10 % 5 % 1 %

1 0,95 0.9750 0.9950
2 0,7764 0.8419 0.9293

3 0,636 0.7076 0.8290

4 0,5652 0.6239 0.7342

5 0,5095 0.5633 0.6685

6 0,468 0.5193 0.6166

7 0,4361 0.4834 0.5758

8 0,4096 0.4543 0.5418

9 0,3875 0.4300 0.5133

10 0,3697 0.4092 0.4889

11 0,3524 0.3912 0.4677

12 0,3381 0.3754 0.4491

13 0,3255 0.3614 0.4325

14 0,3142 0.3489 0.4176

15 0,304 0.3376 0.4042

16 0,2947 0.3273 0.3920

17 0,2863 0.3180 0.3809

18 0,2785 0.3094 0.3706

19 0,2714 0.3014 0.3612

20 0,2647 0.2941 0.3524

21 0,2586 0.2872 0.3443

22 0,2528 0.2809 0.3367

23 0,2475 0.2749 0.3295

24 0,2424 0.2693 0.3229

25 0,2377 0.2640 0.3166

10 % 5 % 1 %

25 0,2377  0.2640  0.3166 
30 0,2176  0.2417  0.2899 

35 0,2019  0.2242  0.2690 

40 0,1891  0.2101  0.2521 

45 0,1786  0.1984  0.2380 

50 0,1696  0.1884  0.2260 

60 0,1551  0.1723  0.2067 

70 0,1438  0.1598  0.1917 

80 0,1347  0.1496  0.1795 

90 0,1271  0.1412  0.1694 

100 0,1207  0.1340  0.1608 

 n>100  1,223 / √n  1,358 / √n  1,629 / √n 

Nb  
samples

Expected certainty level

Maximum Dn value
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Poisson Process
nCounting process 

• Probability that k events occur in a time interval T:  
!
!
!

nP [ NT+dt = k+j | NT = k]  = λ.dt + o(dt)  if j = 1  
    = o(dt)   if j > 1  
    = 1-λ.dt + o(dt)  if j < 1 

!
• The occurrence of more than one event in an infinitesimal time interval is 

negligible.

!27

P [NT = k] =
(� · T )k

k!
· e��·T
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Poisson processes - properties
n Inter-event times (Xi = Ai+1 - Ai) follow an exponential law 

• Time between two events: 1 - e-λt 

!
!
!
!
!
!
!

nSuperposition of two Poisson processes with parameters λ1 
and λ2 is a Poisson process with parameter λ1 + λ2

!28
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Arrivals: Poisson process (Parameter λ) 
Service time : exponential (Parameter µ) 

Single server 
FIFO queue ; infinite length

!29

The M/M/1 queue

µ
λ
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M/M/1 queue model
nTo solve the problem, we examine how the number of clients in the 

system evolves 
• Automaton with an infinite number of states (0, 1, 2, ..., ∞ clients in the  

system) 
• The system passes from state to state with a probability that depends on the 

arrival rate / service rate 
!
!
!
!
!

nWe want to calculate the probability that the system functions in 
each state (i.e. probability that it contains k clients) 
• We compute the expected number of clients from these probabilitis 
!

nThis representation is called a Markov process

!30
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Markov Chains and Markov Processes

!31
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What is a Markov chain/process?
nA mathematical formalism to represent the random behavior of 

a system. 
• Used for performance calculation 
!

nThe system is represented as an automat 
• List all potential states of the system 
• Compute probabilities to pass from one state all others 
!

nApplies to discrete event systems 
• The states form a countable set (can be infinite) 
!

nTwo types of Markov processes 
• Discrete time (Markov chain) 
• Continuous time (Markov process)

!32



RES 841November 2013 Introduction to queueing theory

A toy example: heads or tails
nPlay two times "heads or tails" 
nCompute a score 

• Heads => score + 1 
• Tails => score +2 
!

nWhat is the probability to have a 
score equal to k after the two rounds?

!33
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nStochastic system evolution 
• The system passes from state to state at arbitrary moments 
• Time is counted in number of steps 
!

nTransition probability between two states: probability to arrive 
in a state knowing that we leave the current state.  
• Probability to remain in the same state is not necessarily equal to 0 
• Important property: the path is memory-less.  
!

!
nProperty: homogeneity 

• A Markov chain is homogeneous if P(Xn = j) does not depend on n 
─ i.e.  the transition probabilities do not change over time 

• We consider only homogeneous chains

Markov Chains

!34

P (Xn = j|Xn�1 = in�1 ^Xn�2 = in�2 ^ . . .) = P (Xn = j|Xn�1 = in�1)
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P =

0

BBBB@

pA,A pA,B pA,C pA,D pA,E

pB,A pB,B pB,C pB,D pB,E

pC,A pC,B pC,C pC,D pC,E

pD,A pD,B pD,C pD,D pD,E

pE,A pE,B pE,C pE,D pE,E

1

CCCCA

Graphical and matrix representations
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A

B

CpA,C

pA,B

D

E

pA,A
pB,C

pC,D

pD,B

pB,E

pE,D

nTransition graph 
• Oriented graph 
• We do not represent 

zero probabilities 
• Probabilities to remain 

in the same state are 
sometimes not 
represented 
─ 1 - sum of others 

!
nTransition matrix 

• probability to pass 
from one state to the 
other
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Transient probabilities
nWe want to represent the probabilities of evolution of the system 

• What is the probability that after n steps we arrive in state i ? 
!

nWe define the probabilities vector after n steps: 
• π(n) = (π1(n), π1(n), ...) 
!

n It is computed from: 
• The initial probabilities vector  : π(0) 
• The transition matrix  : P	

!

n Iteratively: 
• π(n) = π(n-1).P	

• ⇒ π(n) = π(0).Pn

!36
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nThe system can evolve from any state to any other state in a 
finite number of steps

Properties: Irreducibility

!37

Probability to pass from 
state i to state j in m 
transitions

There are two subset of states which 
are absorbing => the Markov chain 
is not irreducible

A

B

CpA,C

pA,B

D

E

pA,A

pD,B

pB,E

pE,D

8(i, j), 9m � 1 tq p(m)
i,j 6= 0
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States classification: periodicity
nA state is said to be periodical (period k) si :  
• ∀m non-multiple of k,  
!
!

!
!
!
!
!

nThe period of a Markov chain is the GCD of all its states 
periods 
• It is also the GCD of the circuits lengths in the transition graph 
• If there is a loop (∃i s.t. pi,i ≠ 0), the chain is non-periodical

!38
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States classification: transient states
nLet us represent by         the probability that the first return to a 

state i happens m steps after leaving it 
!

nThe probability to come back to a state after leaving it is: 

!

nThe average number of steps necessary to come back is: 
!

nA state i is said to be:  
• Transient if : fi,i < 1 
• Recurrent null if : fi,i = 1 and Mi = +∞ 
• Recurrent non-null if : fi,i = 1 and Mi < +∞

!39

f (m)
i,i

fi,i =
+1X

m=0

f (m)
i,i

Mi =
+1X

m=0

m.f (m)
i,i
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States classification: transient states
n If the Markov Chain is irreducible: 

• All states have the same nature (transient, recurrent null or recurrent 
non-null) 

• If states are periodical, all states have the same period 
!

n If the Markov Chain is irreducible and finite:  
• All states are recurrent non-null

!40
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nWe want to compute the limit behavior, when m→+∞ 
• Does the limit probabilities vector exist?  
• Is it unique?  
• What is its expression? 
!

nFundamental theorem: a Markov chain that is irreducible and 
non-periodical has one and only one stationary probability 
vector, that does not depend on the initial state. 
!

nTo compute π :  
• π is a fixed point: π = π.P	

• Sum of probabilities is equal to 1 : 

Stationary distribution

!41

⇡ = lim
m!+1

⇡(m)

X

i

⇡i = 1
Resolution  
method #1
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Another resolution method
nFlow conservation equations 

• For each state, the incoming flow is equal to the outgoing flow

!42

A
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pA,B
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9
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From Markov Chains to Markov Processes
nMarkov processes are the continuous time version of Markov 

Chains:  
• There is no notion of step anymore 
• We spend a certain time in each state i, distributed exponentially 

(parameter µi) 
• Transition probabilities (pij) define the possible arrival states when 

leaving a state 
─We suppose pii = 0

!43

i

j

k

µi

pi,k

pi,j



RES 841November 2013 Introduction to queueing theory

Markov Processes: system evolution
nProbability to leave state i between t and t+dt: 

•   
!
!
!
!

nThus, the probability, during time dt, to go from state i to j: 

!44

P (X(t+ dt) 6= i|X(t) = i) = 1� e�µi.dt

= 1� (1� µi.dt+ o(dt))

= µi.dt+ o(dt)

pi,j(dt) = P (X(t+ dt) = j|X(t) = i)

= (µi.dt+ o(dt)) .pi,j

= µi.pi,j .dt+ o(dt) i

j

kµi,k

µi,j

µi,j
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Markov Processes: infinitesimal generator
n Infinitesimal generator 

• Equivalent to the transition probability matrix in discrete-time 
• Matrix: Q = (qi,j) s.t.: 
!

─   

!
─   

!
!
!
!

nExample:

!45

8i 6= j, qi,j = µi,j

8i, qi,i = �
X

j 6=i

µi,j

Q =

0

@
�µ1 µ1,2 µ1,3

µ2,1 �µ2 µ2,3

µ3,1 µ3,2 �µ3

1

A

= �µi

Suppose that pi,i = 0 
Hence Σ pi,j  = 1
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Markov Processes: system evolution
nThe system evolution is characterized by the following 

differential equation: 
!
!
!

nWho admits the following solution:

!46

d⇡(t)

dt
= ⇡(t).Q

⇡(t) = eQ.t
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Finding the stationary distribution
n In an irreducible recurrent not null CTMC, π is the only solution 

of the system. 
nAs the function converges, the derivate is null at the limit: 
!
!
!

nFlow conservation equations:

!47

8i,
X

⇡i.qi,j = 0

)
X

i 6=j

⇡i.qi,j + ⇡j .qj,j = 08i,
X

⇡i.qi,j = 0

)
X

i 6=j

⇡i.µi,j =
X

i 6=j

⇡j .µj,i
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Embedded Markov Chain
nThere is an equivalent Markov Chain (discrete time) for a 

Markov Process 
!
!
!
!
!
!
!

nProperties:  
• Markov Chain irreducible ⇔ Markov Process irreducible 

• Markov Chain transient ⇔ Markov Process transient 

• Markov Chain recurrent ⇔ Markov Process recurrent

!48
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M/M/1 analysis

µ
λ
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Analysis: Markov Process 
nRepresentation of the number of clients in the system as a 

Markov process 
• Valid, as we have a Poisson arrival process & exponential service time 
!
!
!

n It is a birth and death process 
• Equilibrium equations:  
	
 λ.π(i-1) + μ. π(i+1) = λ. π(i) + μ. π(i)  
	
 λ. π(0) = μ. π(1)	


• Hence: 
─  π(i) = ρi. π(0) = ρi.(1 - ρ) 

─ π(0) computed with ∑ π(i) = 1 , then using the sum of the terms of a geometric 
series

!50
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Main results
nQueue load: ρ = λ/µ 

• System is stable iff     ρ < 1 ⇔ λ < µ 

nAverage number of clients in the system: 
• Expected value of the number of clients: 
!
!
!
!
!

nAverage Sojourn time:  
• Via Little’s formula (Q = τ.λ)

!51
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PASTA property
nExpression of the sojourn time:  
!
!
!
!
!
!
!

nThe PASTA property (Poisson Arrivals See Time Averages) 
• In the case of exponential arrivals, the probability that a client finds N 

clients in the queue is equal to the stationary probability that the 
system contains N clients 

• Does not depend on the client, on the arrival moment, …
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Arrivals: Poisson process (Parameter λ) 
Service time : exponential (Parameter µ) 

N servers, all identical 
FIFO queue ; infinite length
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M/M/N queue (Erlang-C)
!
!
!

nEquations d’équilibre : 
• Pour k = 0:	
	
 λ. π(0) = μ. π(1) 	

• Pour k < N: 	
 λ.π(k-1) + (k+1).μ. π(k+1) = λ. π(k) + k.μ. π(k)	

• Pour k ≥ N:   λ.π(k-1) + N.μ. π(k+1) = λ. π(k) + N.μ. π(k) 
!

nSolution:  
• Pour k ≤ N: 
!
!

• Pour k ≥ N:  
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M/M/N queue (Erlang-C)
!

nSumming the probabilities, it is possible to express π(0) : 
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M/M/N queue (Erlang-C)
nProbability to wait: 

• D = P [Q ≥ N]  =  
 
 
  = 
!
!
!

•                D = P [n ≥ N] = 
!
!

!
!

n It is the “Second Erlang law”: E2,N(ρ)
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M/M/N queue (Erlang-C)
nProbability to wait in function of the load for different N:
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=
+1X

k=0

k · ⇢k

Nk
· ⇡(N)

=

⇢

N⇣
1� ⇢

N

⌘2 · ⇡(N)

Q =
⇢

N � ⇢
·D

M/M/N queue (Erlang-C)
nAverage number of clients waiting:
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M/M/N queue (Erlang-C)
nAverage waiting time (in the queue) : 

• Apply Little’s formula to the queue (without servers): 
• Q = W . λ 
!
!

!
!
!
!

nAdding a service time, we get the sojourn time:
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Arrivals: Poisson process (Parameter λ) 
Service time : exponential (Parameter µ) 

N servers, all identical 
No queue (system full => client rejected) 

!
!

Always stable system 
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⇡(i) =

⇢i

i!
NX

k=0

⇢k

k!

M/M/N/N queue (Erlang-B)
nOnly N clients can enter the system 

• Finite Markov process with N states
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M/M/N/N queue (Erlang-B)
nLoss probability: B = π[N] 
!

n   =  
!
!
!
!
!
!
!

n “First Erlang Law” : E1,N(ρ) 
• Use abacus, tables, or a computer program to find the number of 

resources to deploy for satisfying a bounded rejection probability
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Exercise

Analyze the M/M/∞ queue

!63

µ

λ

µ

µ

µ

. 

. 

.



RES 841November 2013 Introduction to queueing theory

Conclusion

!64
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Definitions / Vocabulary 
(to complete)

nParameters 
• Arrival process 
• Process intensity 
• Service time 
• Traffic 

─ Unit = Erlang 
• Load 

nUsual metrics 
• Average number of clients in the queue 
• Waiting time 
• Sojourn time 
• Exit process 
!

nKendall Taxonomy
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Mathematical basis 
(to complete)

nExponential distributions 
• Definition, properties 
• Fitting test 
!

nPoisson process 
• Relationship with exponential distributions 
!

nMarkov Chains and Processes 
• Principle 
• State graph, transition matric 
• Resolution methods
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Queues properties 
(to complete)

nGeneral properties 
• System stability 
• Little’s formula 

nM/M/1 
• Average number of clients 
• Waiting and sojourn time 

nM/M/N 
• Waiting probability 
• Average number of clients in the queue 
• Sojourn time 

nM/M/N/N 
• Loss probability 

nM/M/∞ 
• Poisson process
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