

Réseaux locaux : Couche Liaison

Claude Chaudet

Bref détour par la couche physique

Rôle de la Couche Physique (couche 1)

- Effectuer la traduction bits vers signaux et l'inverse
 - électriques, radio, lumineux,...
- Utilise un codage particulier sur un canal de bande passante limitée

– Téléphone : 3,1 kHz

- ISDN (RNIS): 80 kHz

— ADSL : ≈ 1 MHz

- ADSL 2+ : ≈ 2 MHz

— Wi-Fi : 22 MHz

Application

Présentation

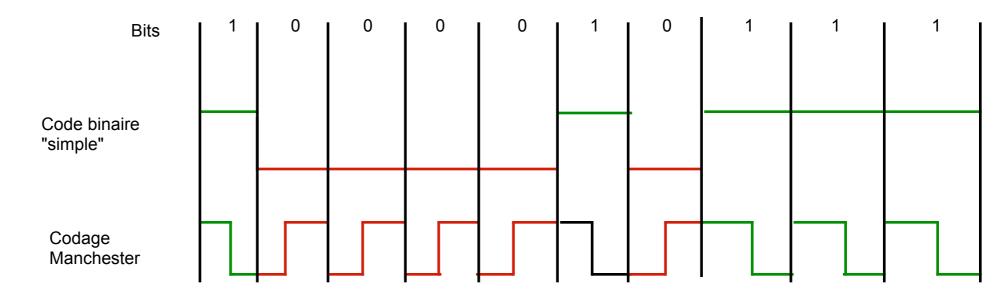
Session

Transport

Réseau

Liaison

Physique



Exemple: codage Manchester

Manchester utilise des transitions entre tensions plutôt que leurs valeurs absolue pour représenter les bits

Haut -> bas : 1

Bas -> haut : 0

- Ce codage nécessite deux fois plus de transitions par seconde que NRZ (tension = valeur)
 - Détection plus aisée
 - Pas de perte de synchronisation sur séquences longues de 0 ou de 1
 - Meilleure résistance au bruit (cf. Théorie Information)

Service offert par la couche physique

- La couche physique fournit un canal de transmission aux couches supérieures possédant plusieurs propriétés :
 - Probabilité d'erreur-bit (fonction du niveau de bruit)
 - RTC: 10⁻⁵
 - Gigabit Ethernet :10⁻¹⁰ (câbles catégorie 5)
 - DSL: 10⁻⁷
 - Wi-Fi : 10⁻⁵
 - Fibre optique : 10⁻¹²
 - Capacité (en bit/s) liée à la Bande passante (en Hz)
 - RTC: 56 kbit/s
 - Ethernet : 100 Mbit/s à 1 Gbit/s
 - ADSL: 8 Mbit/s
 - DSL: 27 Mbit/s pour une longueur de câble d'un km
 - Wi-Fi : 108 Mbit/s

La couche liaison

Organisation de la couche liaison

- Le rôle de cette couche est de gérer l'imperfection du canal fourni par la couche physique.
 - Prévention, détection, correction, réaction aux erreurs
- Elle est généralement séparée en deux souscouches :
 - La couche Logical Link Control (LLC): transmission de trames correctes
 - Séparation en trames
 - Gestion des erreurs de transmission : détection, correction et réaction
 - Contrôle de flux
 - La couche Medium Access Control (MAC): gestion du partage d'un canal par plusieurs émetteurs
 - Adressage (qui doit recevoir la trame)
 - Règles d'accès et de partage du canal binaire

Application

Présentation

Session

Transport

Réseau

Liaison

Physique

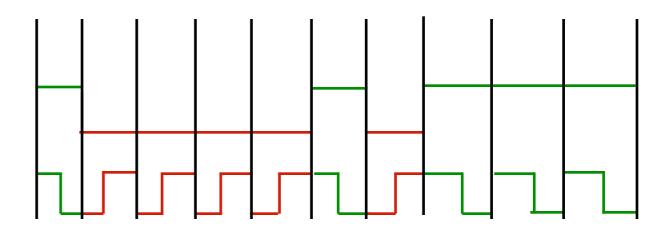
Sous-couche LLC (Logical Link Control)

Séparation d'un flux en trames
Taille des trames
Contrôle de l'intégrité des trames
Stratégies de retransmission (ARQ)

Délimiteurs de trames

- Le support voit passer une suite de 0 et de 1
 - Quel est le début et la fin d'une trame ?
- Utilisation d'un champ longueur dans l'en-tête
 - Ce champ peut subir une erreur de transmission...
- Insertion d'un délimiteur
 - Avant chaque trame, on transmet, par exemple, la suite de bits suivante :

Que se passe-t-il quand cette séquence est présente dans les données à transmettre ?


Exemple de délimiteur et désambiguïsation

- Délimiteur : 01111110
- Lorsque plus de cinq "1" successifs sont présents dans une trame, on insère un 0
 - 01111110 -> 011111010
 - Le récepteur enlèvera ce 0
- Et si on veut transmettre la séquence 01111101 ?
 - Pour éviter l'ambiguïté, on insère un 0 aussi :
 - 01111101 -> 011111001
- Après cinq "1" le récepteur enlève systématiquement le 0, toujours présent sauf dans le délimiteur

Autre possibilité : utilisation du codage physique

- Le codage physique ajoute de la redondance
 - 1 bit est généralement représenté par plus d'un symbole



- Exemple : dans le codage Manchester, les codes "haut-haut" et "bas-bas" (absence de transition sur un temps-bit) ne sont pas utilisés :
 - On peut les utiliser comme délimiteurs
 - Une interférence peut provoquer une confusion

Longueur maximale d'une trame : la MTU

- La couche physique fournit un canal avec erreurs
 - Transmettre des trames trop longues augmente la probabilité d'erreur
 - Les paquets sont découpés en plusieurs trames
 - Taille maximale de trame fonction du médium : MTU (Maximum Transmission Unit)

Exemples de MTU
Modem RTC : 576 octets
Ethernet : 1500 octets
Wi-Fi : 2304 octets

- Nécessite d'ajouter un en-tête à chaque trame
 - MTU trop petite => duplication des en-têtes => Perte d'efficacité

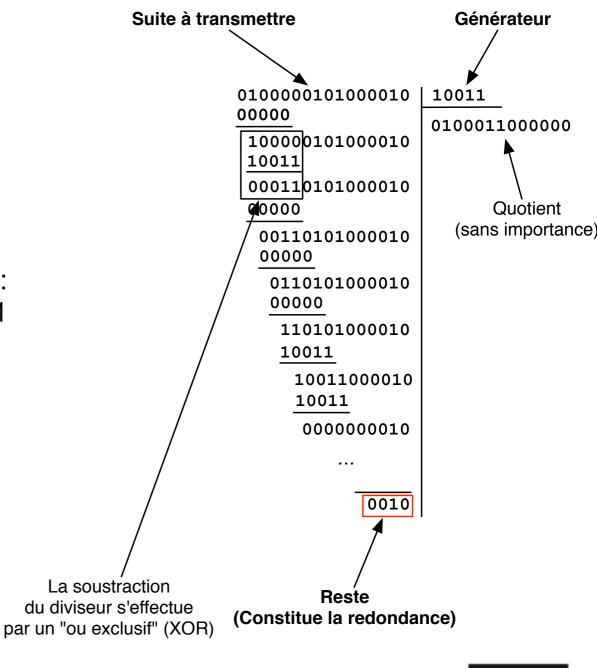
Contrôle d'intégrité: contrôle d'erreurs

- Ajouter de la redondance
- Exemple : ajout de bits de parité
 - Représentation des trames en tableau
 - Ajout de bits indiquant le nombre de 1 et de 0 par ligne /colonne

Contrôle d'intégrité (2)

En cas d'erreur durant la transmission

- Une ligne et une colonne sont fausses
 - Possibilité de corriger cette erreur


Possibilité de détecter deux erreurs ; pas de les corriger

Détection d'erreurs, algorithmes en pratique

Checksum: somme des octets modulo N

- rapide mais peu fiable
- Utilisé plutôt à la couche transport implémentée en logiciel
- Cyclic Redundancy Check : division de polynôme modulo 2
 - Implémentée en matériel (registre à décalage)
 - Formule donnée par des standards, e.g. IEEE 802:
 x³²+x²⁶+x²³+x²²+x¹⁶+x¹²+x¹¹+x¹⁰+x⁸+x⁷+x⁵+x⁴+x²+x+1
 - Détecte toute rafale d'erreurs de 32 bits ou moins et toute rafale affectant un nombre impair de bits
- Souvent évalués sous l'hypothèse d'un flux de données aléatoire
 - Les en-têtes varient peu par exemple => la performance réelle est différente de ce qu'on peut attendre

Contrôle d'intégrité - le principe

- Les trames sont des suites quelconques de bits
 - Toute trame est possible mais toutes les combinaisons {trame + redondance} ne sont pas valides
 - Un mot valide (trame + redondance correcte) est un point dans
 - La distance minimale entre deux mots valides (distance de Hamming) définit la puissance du code
- Corriger les erreurs nécessite plus de redondance que les détecter
 - Détection de k erreurs => distance de Hamming minimale : k+1
 - Correction de k erreurs => distance de Hamming minimale : 2k+1
- cf. cours Théorie de l'Information (CNTI)

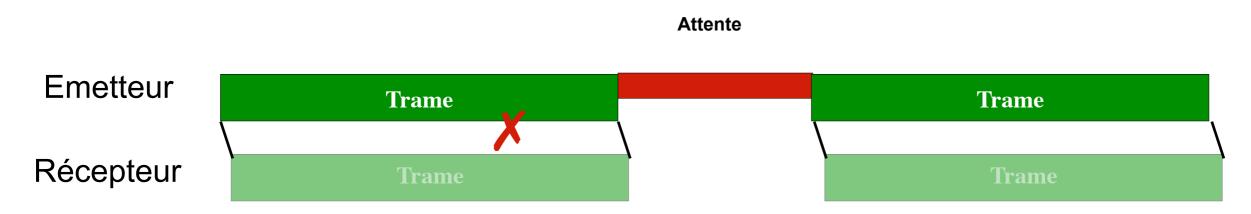
Gestion des retransmissions

Quand on constate une erreur, deux stratégies :

- Ne rien faire et laisser aux couches supérieures le soin de recomposer le fichier, en redemandant, parfois explicitement, une retransmission
- Provoquer une retransmission au niveau liaison

C'est l'émetteur qui retransmettra la trame, il faut le prévenir

- Le récepteur peut demander la retransmission explicite d'une trame
 - Comment sait-il qu'il devait recevoir quelque chose ?
- Le récepteur peut acquitter chaque trames
 - Instauration d'un délai maximum pour l'acquittement à la source, en cas de non-réception, retransmission
 - Retransmission systématique en cas de non-réception de l'acquittement

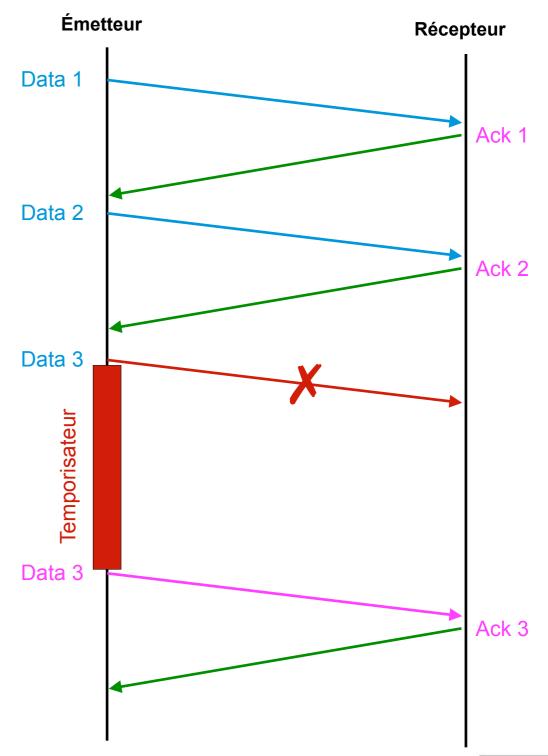


Retransmissions: acquittements

Transmission correcte :

Transmission incorrecte :

Il existe, comme toujours, plusieurs stratégies possibles pour les acquittements de trames.


ARQ: Stop and wait

- Stratégie n°1 : acquitter toutes les trames
 - Stop and Wait ARQ
- Que se passe-t-il lorsque l'acquittement est perdu (erreurs, ...) ?
 - Retransmission ⇒ trames dupliquées à la réception
- Consomme des ressources
 - Taille de l'acquittement
 - Temporisateurs entre trames

ARQ: Stop and wait

- Pendant l'attente de l'acquittement, l'émetteur ne fait rien
 - Les paquets s'accumulent en file d'attente et risquent d'être supprimés
- Nécessite peu de mémoire au niveau du récepteur
 - Tout paquet reçu est immédiatement transmis à la couche supérieure

Pipelining

Quelle est l'efficacité de ce mécanisme ?

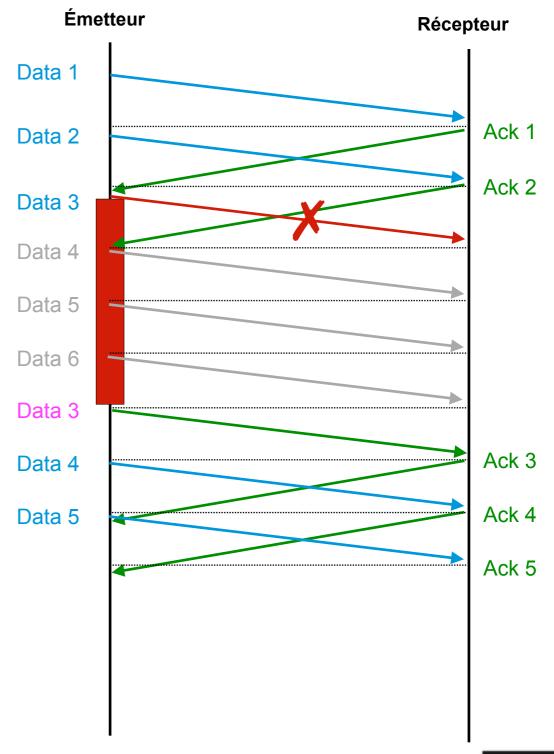
- Exemple: Liaison satellite, 50 kb/s 500-ms délai d'aller-retour
 - T=0 ms, l'émetteur démarre l'envoi d'une trame de 1000 bits
 - T=20 ms, l'émetteur a terminé la transmission
 - T=270 ms,
 la trame est parvenue en totalité au récepteur
 - T>520 ms, acquittement parvenu à l'émetteur => Efficacité = 20/520 = 4%

Il faudrait transmettre plusieurs trames en parallèle

- Dans l'exemple précédente, l'émetteur peut envoyer 26 avant le premier acquittement!
- Ce type de technique se nomme pipelining
- Elle est nécessaire quand le produit capacité x délai est grand

Bande passante (capacité) x délai aller-retour = capacité du pipeline (bits)

Attention sur les canaux à fort taux de pertes


ARQ: Go-Back-N

- On n'attend pas l'acquittement pour transmettre la trame suivante
 - Pendant le temporisateur, l'émetteur n'est pas bloqué
 - Une fenêtre définit le nombre max. de trames non acquittées pouvant être envoyées
- Le récepteur examine les numéros de séquence des trames
 - Lorsqu'un numéro manque, on n'acquitte plus rien
- Lorsqu'un temporisateur expire, on retransmet tout depuis la trame perdue
 - Envoi de trames dupliquées

ARQ: Go-Back-N

- Optimise l'utilisation des ressources
 - Transmission full-duplex
- En cas d'erreur, engendre beaucoup de retransmissions
 - Informations redondantes
- Bien adapté au cas où les erreurs sont rares

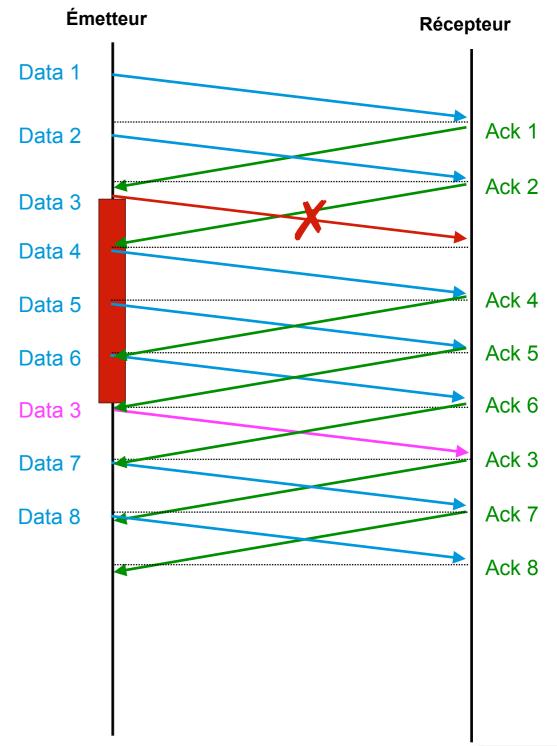
243

ARQ: Selective Repeat

Similaire à Go-Back-N (fenêtre d'anticipation)

- Le récepteur garde toutes les trames reçues correctement et avertit l'émetteur des erreurs
- L'émetteur retransmet les trames erronées à la fin de sa fenêtre

Performance :


244

- Plus efficace que les stratégies précédentes
- Accroît la complexité du récepteur (tampon nécessaire)

ARQ: Selective Repeat

- Plus efficace en termes de retransmissions
 - On ne retransmet que ce qui est effectivement perdu
- Nécessite une mémoire plus importante au niveau du récepteur
 - Dimensionnement de la fenêtre pour éviter de saturer le récepteur
 - ⇒ Contrôle de flux

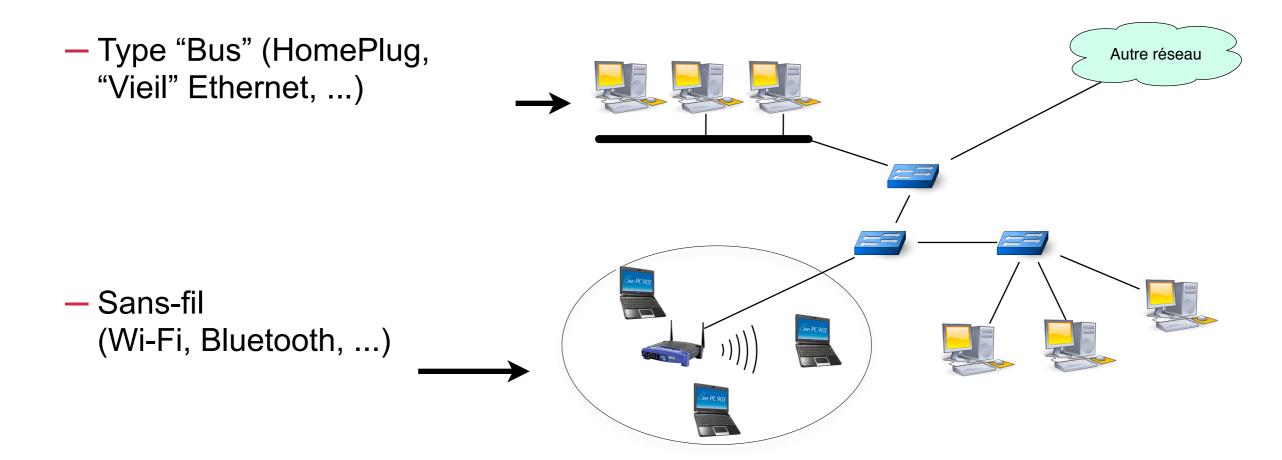
À retenir

- La couche physique fournit un canal imparfait
- Le rôle majeur de la couche liaison est d'optimiser l'utilisation de ce canal
 - Compromis entre surcoût (ex: en-têtes) et impact des problèmes
 - Définition des constantes (longueur de trame, débit, etc.) les plus efficaces

Rôles principaux

246

- Séparer une suite de bits en trames
- Gérer efficacement les erreurs de transmission
 - Détection (CRC, somme de contrôle, acquittements, ...)
 - Correction (FEC, codes correcteurs)
 - Réaction (retransmissions, ARQ)



Sous-couche MAC (Medium Access Control)

Claude Chaudet

Rôle de la sous-couche MAC

- Permettre à plus de deux stations de dialoguer
 - Adressage (à qui est destiné le message)
 - Gestion des accès à un médium partagé

248

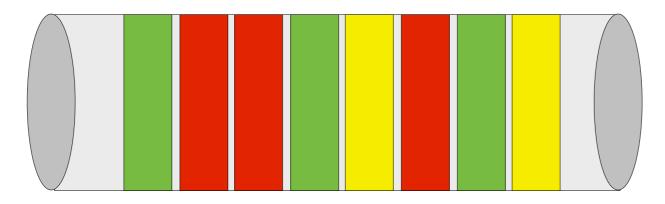
Problématique de l'accès au médium

- L'accès au médium vise à optimiser l'utilisation d'un canal de communication partagé
 - Éviter l'occurrence de collisions
 - Minimiser le surcoût
- Applicable sur des médiums de transmission partagés
 - Filaire : bus, anneau
 - Sans-fil : au sein d'un même canal
- Stratégies Usuelles
 - Allocation de sous-canaux (TDMA; FDMA; CDMA; ...)
 - Stratégies aléatoires (ALOHA ; CSMA ; ...)

Division explicite d'un canal

Gestion des accès multiples FDMA (Frequency Division Multiple Access)

Quand on a plusieurs canaux (fréquences par exemple), allouer une fréquence à chaque émetteur



- Mécanisme similaire à la radio FM
- Perte de bande passante : intervalles de garde entre deux canaux
- Nécessite que les récepteurs puissent détecter les signaux les concernant sur l'ensemble de la bande de fréquences
- Quand il y a plus d'émetteurs que de fréquences disponibles, la technique n'est pas suffisante.

Gestion des accès multiples TDMA (Time Division Multiple Access)

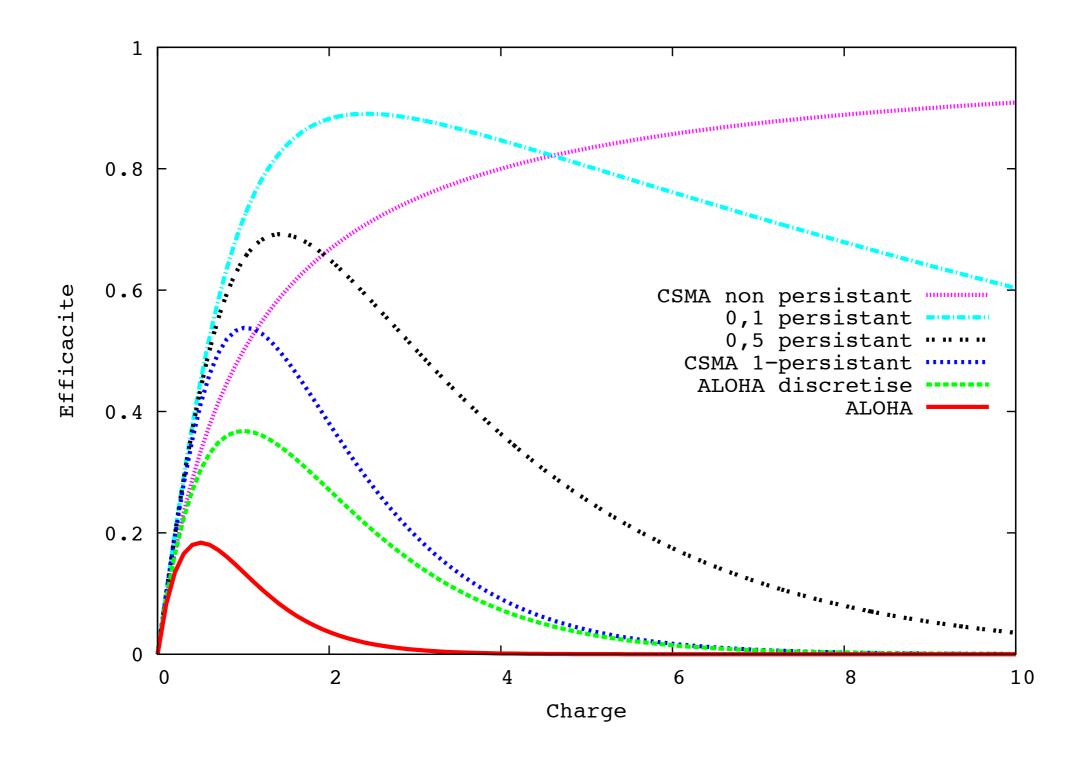
Il est possible d'allouer à chaque station des temps de parole

- Très adapté aux trafics réguliers (PCM par exemple)
- Que se passe-t-il quand une station n'utilise pas le temps qui lui est alloué
 ?
 - Perte de performances sous certaines conditions de trafic
- Mécanisme centralisé : qui réalise cette allocation ?

L'accès aléatoire

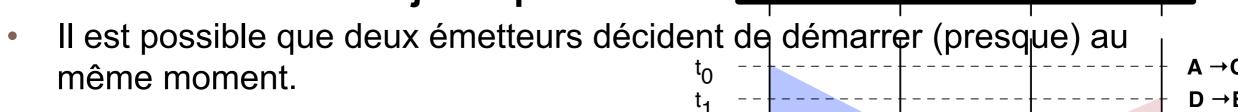
Gestion des accès multiples Accès aléatoire

- ALOHA: émissions à volonté, sans organisation
 - efficacité de 18 % ; 36 % en alignant les émissions sur des moments précis (ALOHA discretisé / slotté)
- Amélioration simple : CSMA = écouter avant d'émettre
 - Origine : Kleinrock & Tobagi ; début des années 1970
- Lorsqu'un émetteur souhaite transmettre une trame :
 - Il examine le médium et vérifie qu'aucun signal n'est en train d'être émis.
 - Si le canal est libre, il transmet
 - Si le canal est occupé, il patiente jusqu'à ce qu'il soit libéré


254

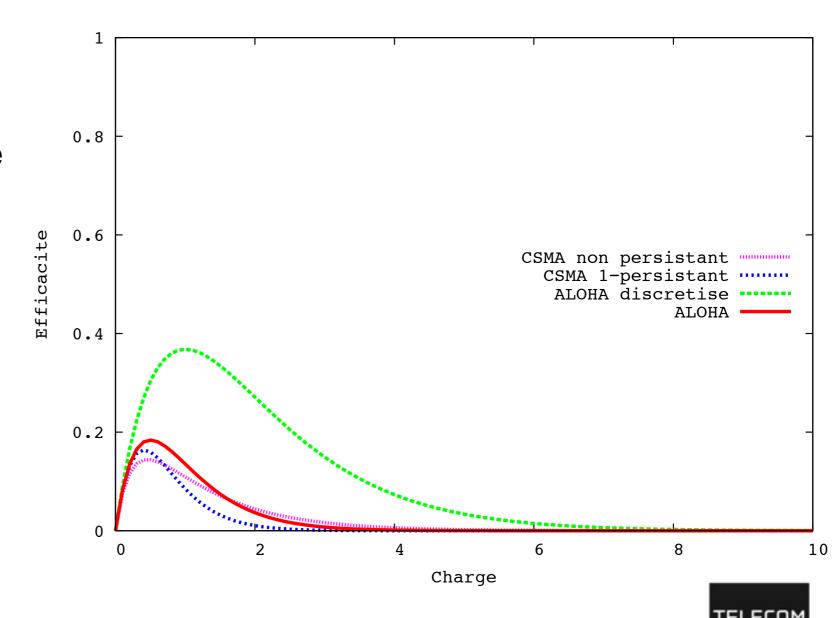
Accès aléatoire : désynchronisation des émetteurs

- Quand le canal est libéré, plusieurs émetteurs peuvent être en attente
 - S'ils transmettent dès que possible, collision systématique
- CSMA p-persistant : chaque station en attente émettra avec une probabilité p
- CSMA slotté : on tire un temps d'attente aléatoire (backoff), on patiente et le premier à émettre bloque les autres


Accès aléatoire : performances

Influence du temps de propagation

Les collisions sont toujours possibles

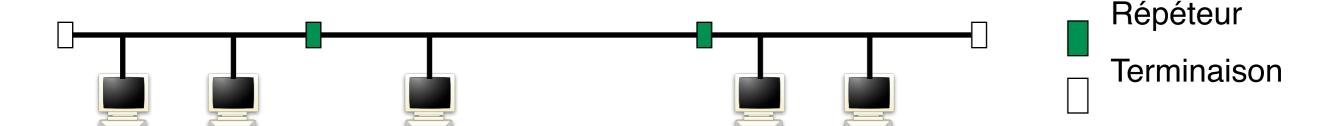


- Il existe un intervalle de vulnérabilité pour chaque trame
 - Il faut que tous les concurrents aient perçu le signal
 - Fonction du temps de propagation

Influence du temps de propagation (2)

- La performance des CSMA est dépendante du temps de propagation
 - Temps de détection de l'occupation du canal
 - Quand ce temps tend vers le temps de transmission d'une trame performance inférieure à ALOHA
 - Collisions
 - Temps d'attente
 - ⇒Certains protocoles
 limitent la longueur des câbles

Ethernet sur médium partagé CSMA/CD



Le scénario

Réseau organisé en bus (médium partagé)

- Répéteurs pour re-générer le signal et aller au delà de la limite imposée par l'atténuation dans le câble
- Terminaisons (résistances) aux extrémités du câble pour éviter les échos perturbateurs.

Utilisation d'un protocole de type CSMA

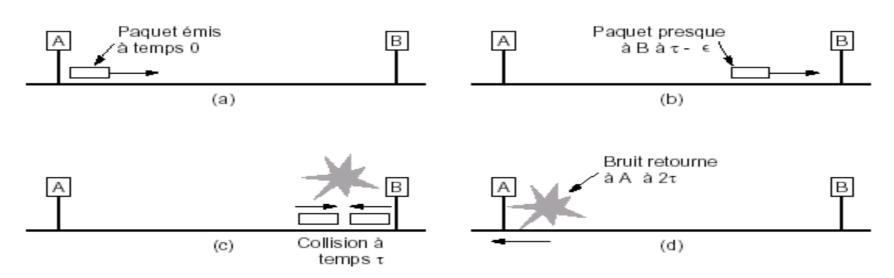
 Examen du niveau de signal sur le câble avant toute tentative de transmission

Gestion des collisions - CSMA/CD

- L'émetteur peut détecter l'occurrence d'une collision :
 - Les stations examinent le signal reçu et le comparent au signal émis.
 - S'il y a une différence, il y a un signal perturbateur
- Dans ce cas, arrêter la transmission aussitôt
 - Si l'émetteur ne peut décoder son propre signal, le récepteur n'en sera pas capable non plus
- Backoff exponentiel : ré-émission de la trame après attente aléatoire
 - On tire aléatoirement un entier, dans un intervalle prédéterminé (fenêtre de contention) : n ∈ [0 ; M]
 - On patiente n fois un temps prédéfini
 - En cas de collision à répétition, on double l'intervalle à chaque fois : M \rightarrow 2.M \rightarrow 4M ...

Ethernet - point de vue d'un émetteur

- Réception d'une unité d'information de la couche réseau. Préparation d'une trame et mise en tampon.
- **Ecoute du canal**
 - Si libre, émission de la trame
 - Si occupé, attente libération canal + 96 temps-bit avant transmission (9,6 µs à 10 Mb/s)
- Pendant la transmission
 - Écoute du médium pour détecter les collisions
- En cas de collision


262

- Arrêt immédiat de la transmission
- Envoi d'un signal de brouillage de 48 bits
- Après la nième collision, backoff exponentiel :
 - Tirage aléatoire d'un nombre dans $[0; 2^m 1]$ (m = min (n,10))
 - Attente de ce nombre de fois 512 temps bits (i.e. 51,2 µs à 10 Mb/s)
 - Limite du nombre d'essais à 15

Pourquoi brouiller pendant 48 bits?

- Pour que tous les autres terminaux détectent la collision
 - Exemple : A émet, B émet juste avant que le signal de A ne lui parvienne
 - B s'arrête tout de suite et n'aura transmis que quelques bits
 - A ne détecte pas forcément la collision (trop faible énergie émise par B ou trame de taille très faible par exemple)
- Le brouillage (jam) sert à s'assurer que toute collision est bien détectée

Source: A. Tannenbaum - Réseaux

Ethernet: service non fiable

Ethernet est un service sans connexion et non fiable

- Pas d'acquittement en cas de réussite
- Pas de demande explicite de retransmission en cas d'erreur
- L'émetteur n'a pas l'assurance que la trame a bien été reçue
 - Récepteur éteint, en panne, etc.

L'application voit-elle aussi des "trous" dans la transmission ?

- Tout dépend des protocoles de niveau supérieur (transport)
- Il est possible d'obtenir un service fiable de bout-en-bout au dessus d'un service non fiable au niveau liaison

264

Format des trames

Préambule @ dest @ src type Données Checksum

Préambule (8 octets)

• 7x (10101010) pour synchroniser + 1x (10101011)

@ dest, @src (2 x 6 octets)

adresses des correspondants

Type (2 octets)

Identifie le protocole de niveau supérieur (IP, IPX, ...)

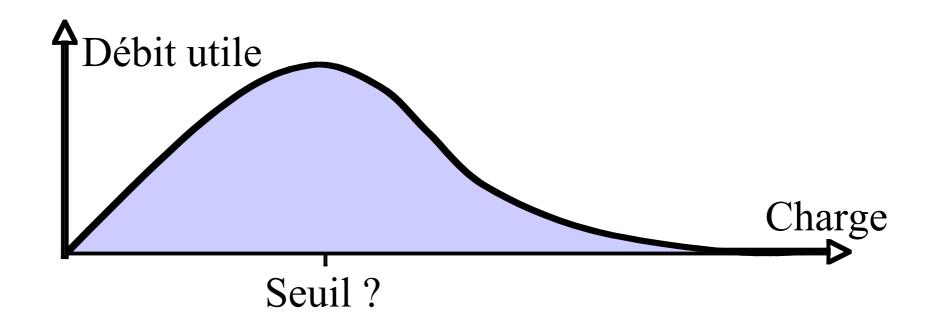
Données (48 à 1500 octets)

Si la taille effective est inférieure à 48 octets, ajout de bourrage

Checksum (4 octets)

Calculé selon le codage CRC sur la partie @dest -> données

Ordre d'émission


Octets : dans l'ordre (préambule en premier)

Bits: LSB (little endian)

Performance

- Directement fonction de la probabilité de collision
 - S'il y a trop de collisions, les terminaux passent leur temps à attendre

- À faible charge, performances optimales (aucun temps d'attente)
- A forte charge, effondrement

Dégradation des performances

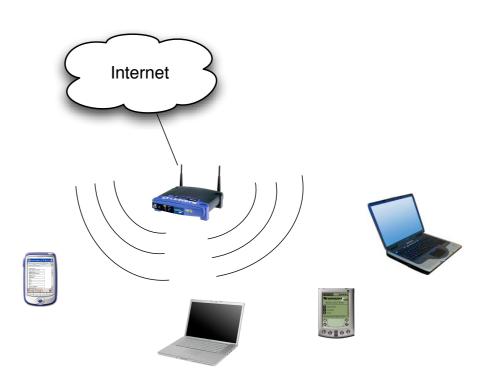
Simulation:
ajout périodique
d'émetteurs
cherchant à
occuper 40% de la
capacité chacun

UDP 2 UDP 3 UDP 4 UDP 5 UDP 6 UDP 7 UDP 8 UDP 9 UDP 10 **UDP 11 UDP 12 UDP 13 UDP 14 UDP 15** TCP TOTAL

UDP 1

Ethernet aujourd'hui

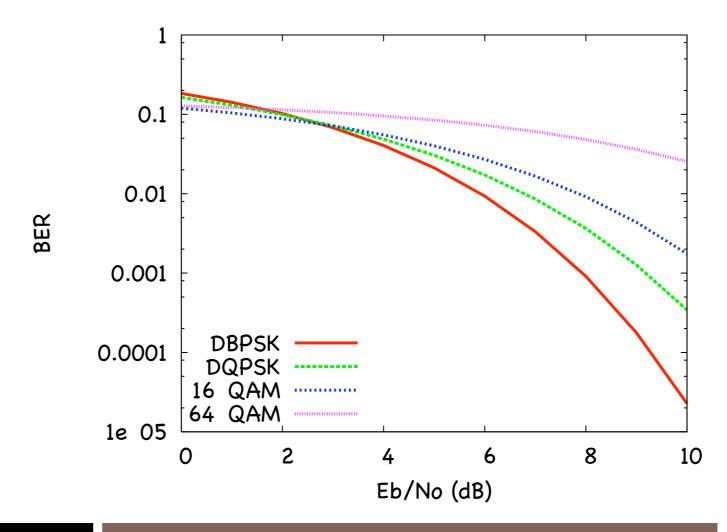
Evolution des topologies


- Plus d'architecture en bus, essentiellement de l'Ethernet commuté (cf. parties suivantes du cours)
- CSMA/CD peu utilisé aujourd'hui

Evolution des débits

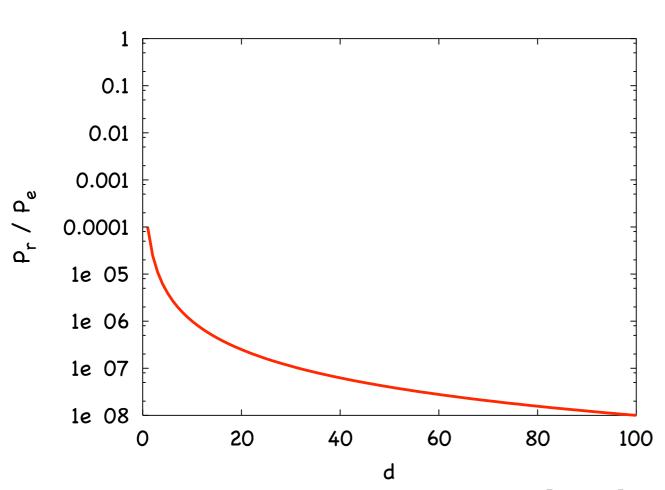
- Fast Ethernet (100 Mb/s très répandu)
- Gigabit Ethernet en plein essor
 - En standard dans la plupart des ordinateurs
- 10 Gb/s Ethernet en préparation

Réseaux sans fil Wi-Fi (IEEE 802.11) — CSMA/CA



Rappel: rapport signal sur bruit

- La probabilité d'erreur-bit
 - Dépend de la puissance reçue
 - Dépend du niveau de bruit ambiant (bruit + interférences)
 - Dépend du codage physique (modulation, ...) utilisé


Décroît lorsque le rapport signal sur bruit augmente

Environnement radio - atténuation

En espace libre :

$$P_r = \left(\frac{\lambda^2}{16 \cdot \pi^2 \cdot d^2}\right) \cdot G_e \cdot G_r \cdot P_e$$

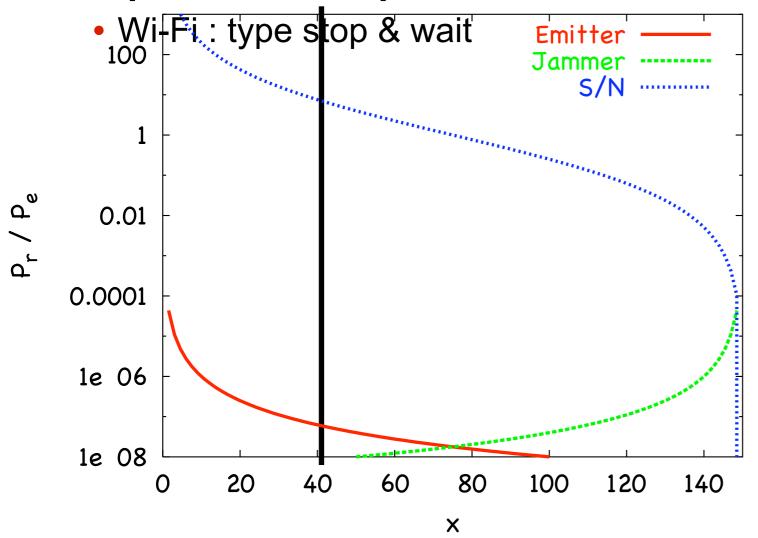
Pr : puissance reçue

Pe : puissance émise

 λ : longueur d'onde

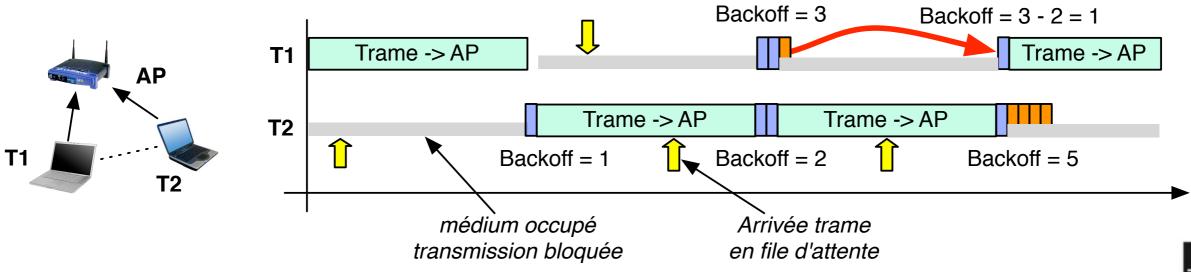
d: distance entre l'émetteur et le récepteur

Gr: Gain de l'antenne réceptrice

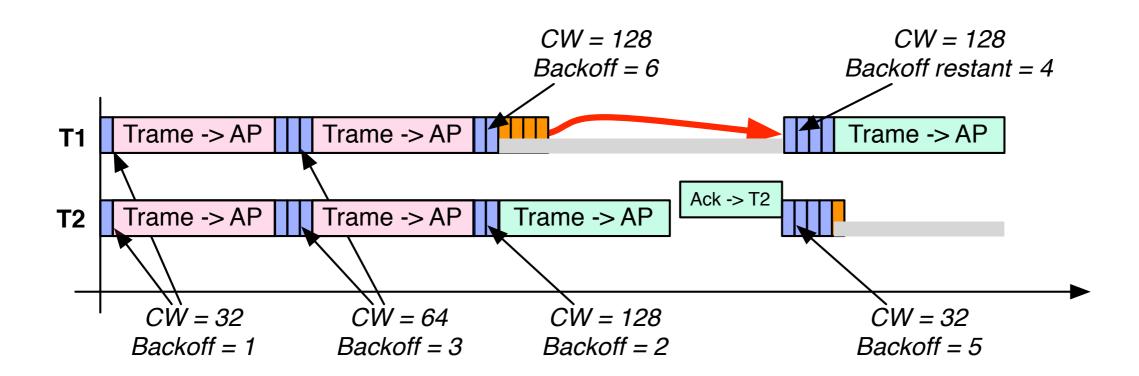

Ge: Gain de l'antenne émettrice

La puissance du signal décroît en fonction du carré de la distance

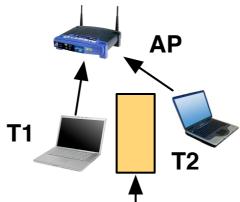
Collisions dans un environnement radio

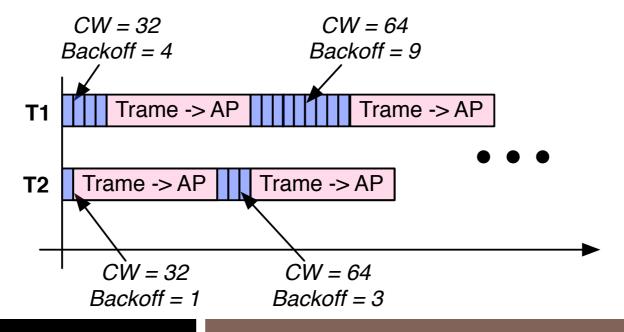

- Détection de collision impossible
 - Ir El sible R êter l'émission d'une en cours
- Acquittements explicites nécessaires

Emission d'une trame


- Toute émission démarrée ne sera pas arrêtée avant la fin
- CSMA/CA: un CSMA classique mais plus prudent
 - Quand le médium se libère, on attend toujours un délai aléatoire
 - En Ethernet, on s'autorisait un premier essai sans attente
 - La fenêtre de contention initiale est plus grande qu'avec Ethernet (16 vs.
 2)
 - Lorsqu'on perd la contention, on conserve la valeur du backoff pour le prochain essai
 - On utilise aussi un backoff entre deux trames successives
 - Permet de laisser la main à d'autres émetteurs qui avaient perdu la contention

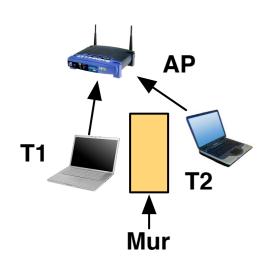
Acquittements et retransmissions

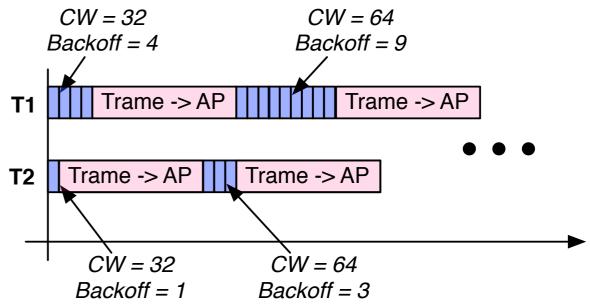

- Toute trame unicast doit être acquittée explicitement
 - Acquittements
- Retransmission en l'absence d'acquittement
 - En doublant la taille de la fenêtre de contention (max : 1024)
 - Suppression après nombre de retransmissions maximum (entre 4 et 7)



Spécificité sans-fil: scénario de la station cachée

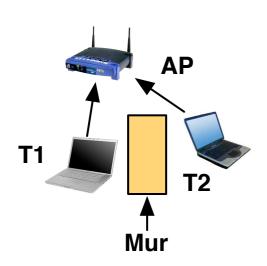
- Tout repose sur la détection de porteuse
 - Que se passe-t-il quand deux émetteurs ne captent pas leurs signaux mutuels ?

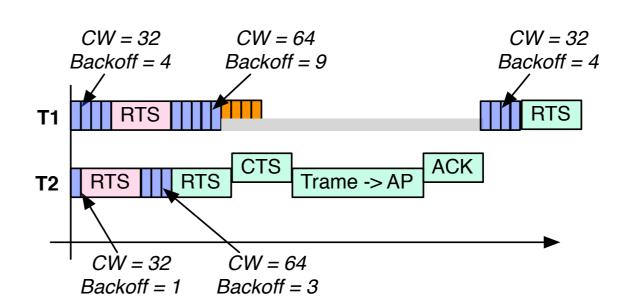

Si les trames sont trop longués, collisions à répétition :



Origine du problème

Le problème vient du rapport entre backoff moyen et temps nécessaire à l'émission d'une trame


Exemple : émission de 1500 octets à 11 Mb/s : 343 μs


CW	32	64	128	256	512	1024
Backoff moyen	310 µs	630 µs	1270 µs	2550 µs	5110 µs	10230 µs

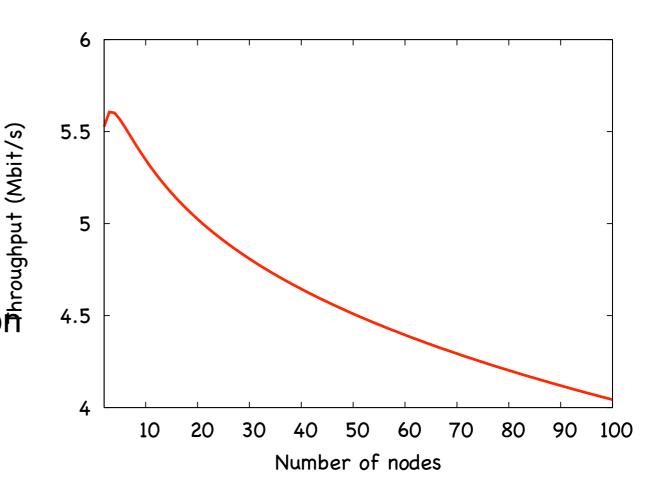
Mécanisme RTS-CTS

- Solution: précèder l'émission des données par un échange de paquets courts:
 - RTS (Request To Send) de l'émetteur candidat au récepteur demande d'autorisation
 - CTS (Clear To Send) du récepteur à l'émetteur autorisation accordée
 - Canal diffusant : la réponse du récepteur permet d'avertir tous ses voisins

- Le CTS contient le temps estimé de la transmission
 - Les émetteurs concurrents sont bloqués durant ce temps

Performance de la couche MAC

Performance exacte : calcul technique (cf. RES 222)


■ Fort surcoût

- Backoff, RTS, CTS, acquittement, ...
- Efficacité de l'ordre de 50% à 60 %

Lorsque le nombre d'émetteurs augmente

- Les backoffs s'écoulent en parallèle ⇒ gain de performances
- Rapidement, la probabilité de collision

 augmente ⇒ perte de performances

Équité d'accès = équité de débit ?

Wi-Fi propose plusieurs débits

- 1, 2, 5.5, 11, 18, 27, 33, 54, ... Mbit/s
- Modulations différentes ⇒ portées et résistance au bruit différentes
- Chaque station cherche le meilleur compromis pertes vs. débit

■ Une station à 1 Mb/s vs. toutes les autres à 54 Mb/s :

- Emissions sur le même canal, partagé
- Wi-Fi fournit une équité au niveau paquet
- Chaque station ne peut émettre qu'une trame tous les tours
- L'émission à 1 Mb/s augmente la durée du tour
- Donc tout le monde a un débit de 1 Mb/s

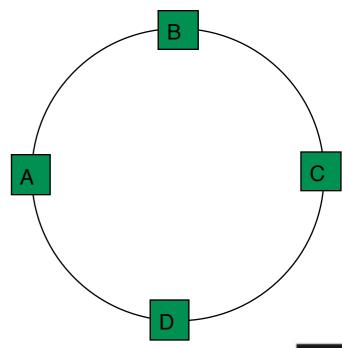
Le point d'accès est-il une station comme les autres ?

Les communications dans Internet sont bi-directionnelles

TCP, échanges p2p, téléphonie, ...

Tout le trafic passe par le point d'accès

- Contrairement à un commutateur Ethernet, une seule interface sans-fil
- Le point d'accès a donc beaucoup plus de trafic à émettre que les autres stations


Donner la priorité au point d'accès

- Possibilité théorique (i.e. non mise en œuvre dans les points d'accès) d'allouer plus de temps au point d'accès.
- cf. WiFox (ACM Co-Next 2012)

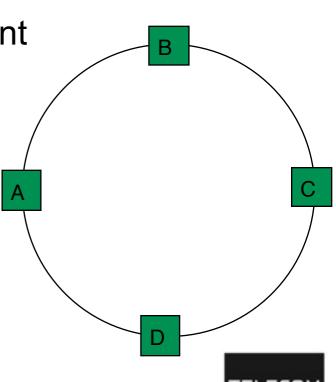
Protocoles sans collisions décentralisés

Exemple de l'anneau à jeton (Token Ring)

Token Ring — Introduction

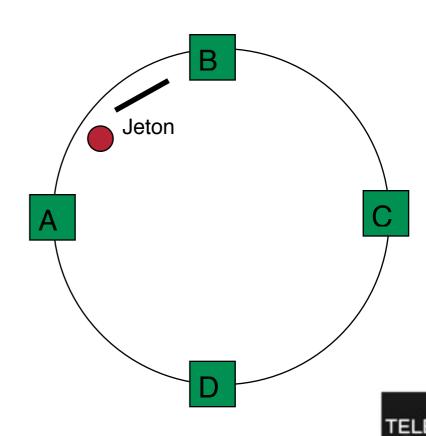
Historique

- Développé en 1969
- Introduit par IBM dans les années 1980
- Normalisé par l'IEEE (IEEE 802.5) en 1985
- En fin de vie aujourd'hui même s'il reste un certain nombre de réseaux déployés (banques, compagnies aériennes, ...)

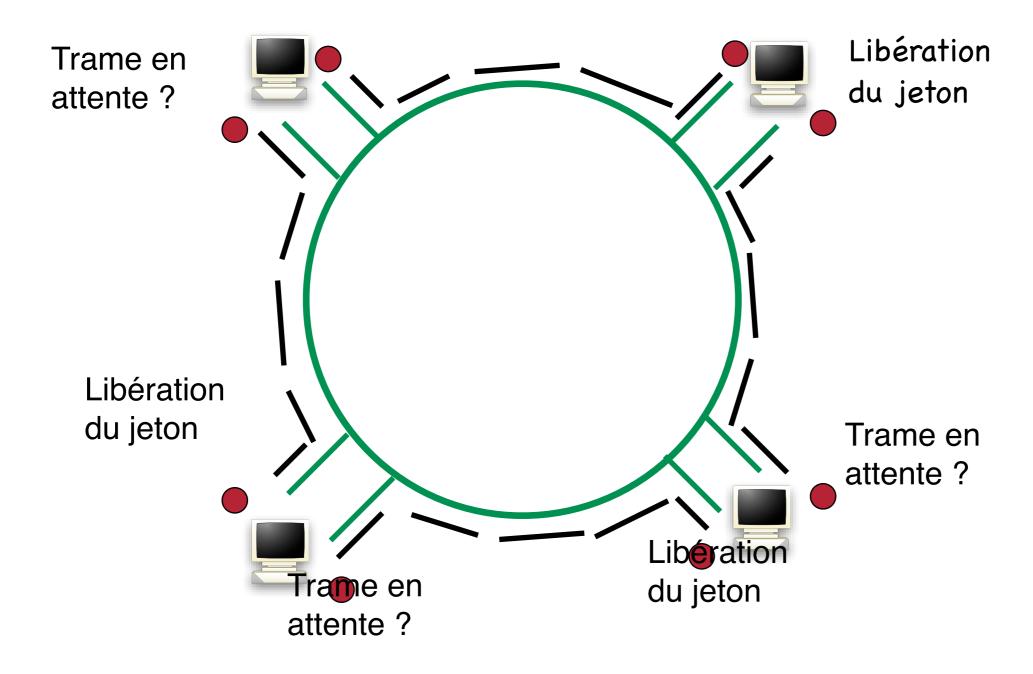

Topologie en anneau

Ensemble de stations reliées par des liaisons point-à-point

Débits typiques


IBM : 4 Mb/s

IEEE 802.5 : 16 Mb/s


Technique d'accès

- Anneau unidirectionnel
- Utilisation d'un jeton (Token) virtuel pour organiser les accès
 - Seule la station possédant le jeton peut émettre une trame
 - Pas de collisions
 - La station passe le jeton à sa voisine sur l'anneau une fois la transmission terminée
- Analogie : tour de table dans une réunion

Principe: circulation du jeton Trame en

attente?

Principe: circulation des trames

Ré-émission

⇒ destruction attente? de la trame Suis-je le destinataire? Libération du jeton Émission de trame Trame en Ré-émission attente? de la trame Suis-je le destinataire? Doit-on détruire la trame? émission de la trame Réq**i**on de la trame

Trame

Trame en

acquittée

Gestion de l'anneau

Initialisation

286

- Il faut un jeton pour commencer à transmettre, qui le génère ?
 - Utilisation d'un noeud particulier : le moniteur

Défaillance de station

- Anneau coupé si une station est défaillante
 - Comment détecter la défaillance d'une machine ?
 - Les stations précédentes et suivante "renvoient" le trafic dans l'autre direction
- Et si la station défaillante possédait le jeton ?
 - Utilisation d'une station particulière (le moniteur) pour re-générer le jeton
 - Et si le moniteur est défaillant ?

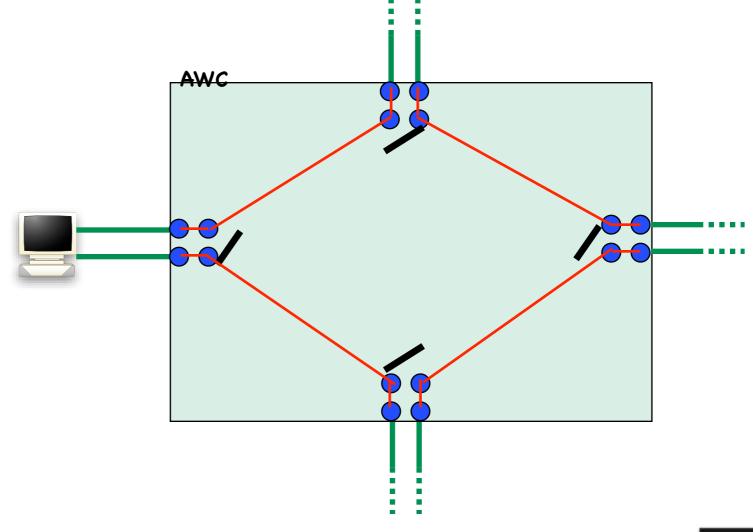

Élection d'un moniteur

- Toute station voulant devenir moniteur émet une trame spécifique ("claim token") avec son adresse en paramètre
- Une station désirant être moniteur voyant passer cette trame
 - Détruit les trames d'adresse plus faible
 - Laisse passer les trames d'adresse plus haute
- Lorsqu'une telle trame fait un tour complet, elle désigne le moniteur (celui d'adresse la plus grande)

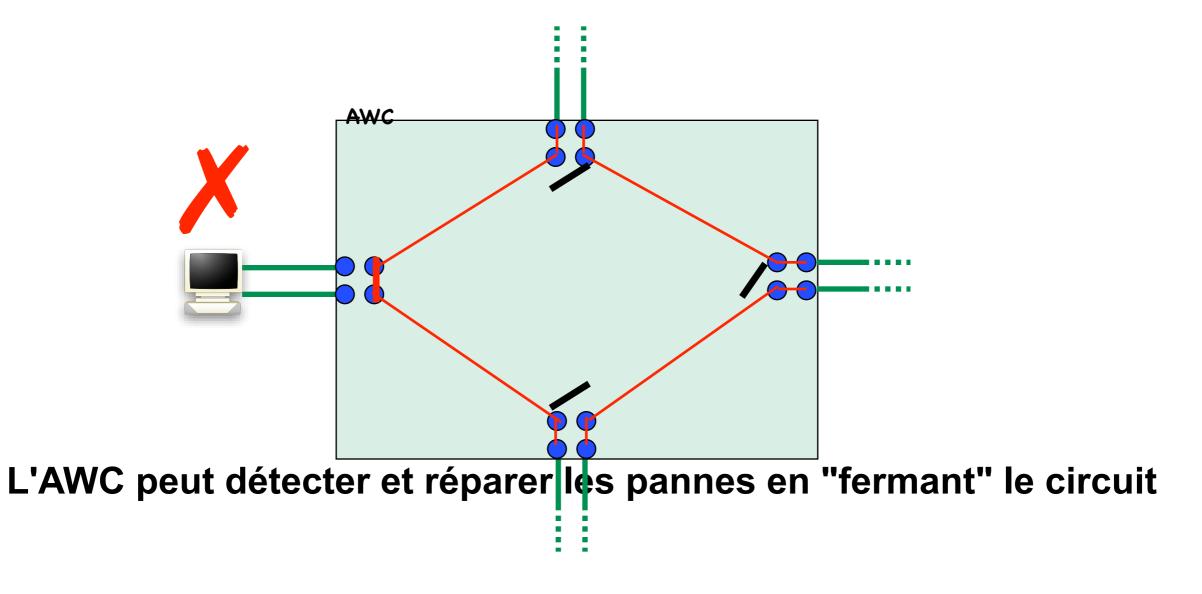
287

Token Ring: format des trames

- BEG : préambule
- CMD : type de trame (1 = données ; 0 = jeton), priorité, ...
- Orig / type : type de trame (données ou trame de contrôle)
 - utilisé pour réinitialiser l'anneau, élire un moniteur, ...
- State : utilisé pour l'acquittement des trames
- Format du jeton :


BEG CMD END

288


Câblage

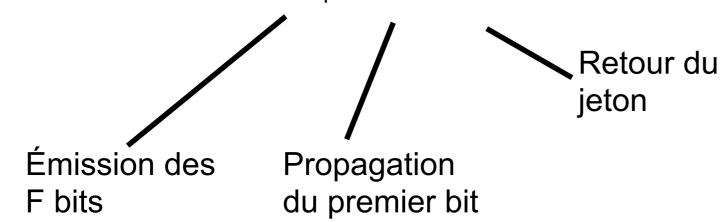
- Dans la réalité, la topologie est en étoile et non en bus
 - Utilisation d'un câblage normalisé
 - Utilisation de concentrateurs actifs
 - AWC : Active Wire Ring Concentrator
 - Supervision des stations
 - Cicatrisation

Cicatrisation

Scénario

N noeuds inter-connectés par un anneau à jeton

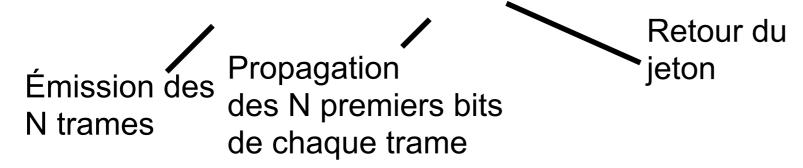
- Longueur totale de l'anneau = 1 km
- Vitesse de propagation : 250 000 km/s
- Taille max. des paquets : 4500 octets
- Débit des lignes : 16 Mb/s
- Une seule trame par émission
- Temps de traitement au passage d'un paquet négligeable
- Temps d'émission du jeton négligeable


Temps de propagation d'un bit sur l'anneau :

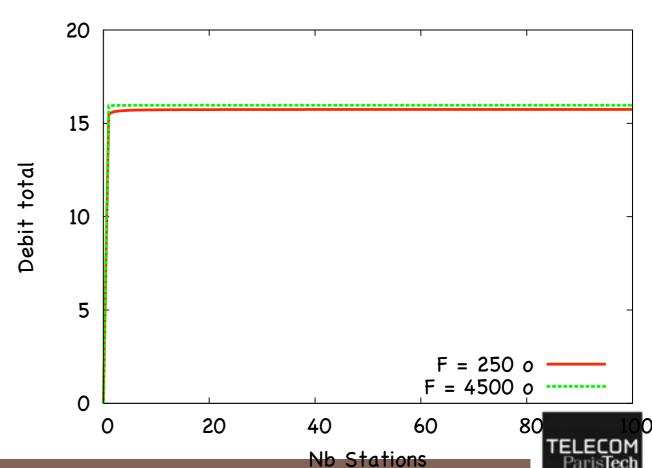
• Ttour = $1/250000 = 4 \mu s$

À faible charge

- Du point de vue d'une station : temps minimum entre deux émissions de trames de longueur F bits
 - $T_{min trame} = F/D + T_p + T_{tour}$

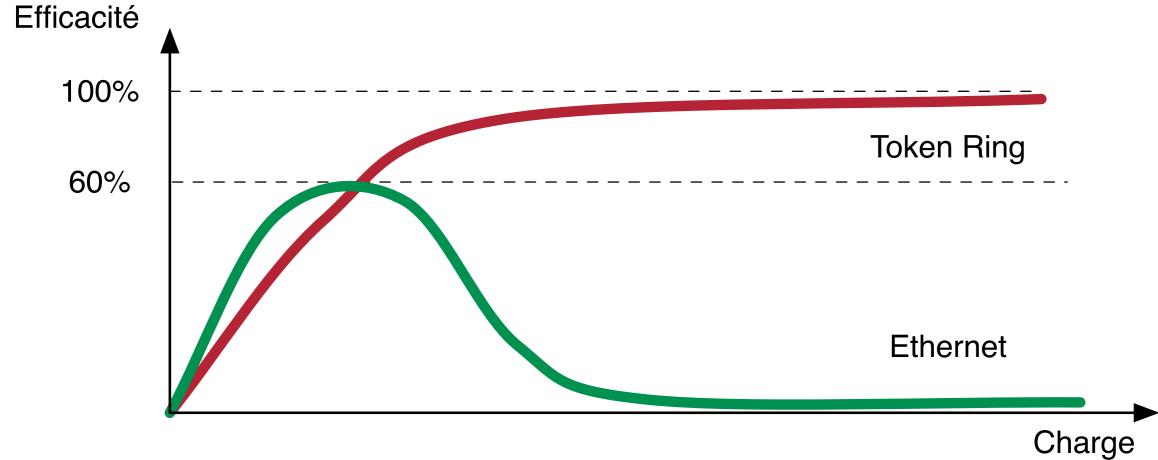

- Débit maximum pour une station :
 - $D_{max} = F / T_{min trame}$

	F = 250 o	F = 4500 o
Dmax	15,037 Mb/s	15,943 Mb/s



À forte charge

- Du point de vue d'une station : temps maximum entre deux émissions de trames de longueur F bits
 - $T_{\text{max trame}} = N \cdot F/D + N \cdot T_p + T_{\text{tour}}$


- Débit minimum pour une station :
 - $D_{min} = F / T_{max trame}$

claude.chaudet@telecom-paristech.fe

Comparaison Ethernet-Token Ring

- Calcul de performance : voir TD
- Performance à faible charge réduite par le jeton
- Passage à l'échelle bien meilleur qu'Ethernet
 - Surcoût constant, pas de collisions

À retenir

Adressage MAC

Format

295

- Fonctionnement des équipements d'interconnexion
- **Broadcast**
- Rôle principal : éviter les collisions et les erreurs de transmission
- Plusieurs familles de stratégies
 - Allocation de canaux à des émetteurs / groupes d'émetteur (*DMA)
 - Nécessite un arbitre central ; peu dynamique
 - Accès aléatoire décentralisé (ALOHA, CSMA et dérivés)
 - Optimisé pour un niveau de charge précis mais faible capacité de passage à l'échelle
 - Accès sans collision décentralisé (Token Ring, ...)
 - Introduit un surcoût de gestion élevé pour compenser une fragilité intrinsèque

